openblt/Target/Demo/ARMCM4_STM32F3_Discovery_F3.../Boot/App/blt_conf.h

174 lines
10 KiB
C

/************************************************************************************//**
* \file Demo/ARMCM4_STM32F3_Discovery_F303VC_CubeIDE/Boot/App/blt_conf.h
* \brief Bootloader configuration header file.
* \ingroup Boot_ARMCM4_STM32F3_Discovery_F303VC_CubeIDE
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2020 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
#ifndef BLT_CONF_H
#define BLT_CONF_H
/****************************************************************************************
* C P U D R I V E R C O N F I G U R A T I O N
****************************************************************************************/
/* To properly initialize the baudrate clocks of the communication interface, typically
* the speed of the crystal oscillator and/or the speed at which the system runs is
* needed. Set these through configurables BOOT_CPU_XTAL_SPEED_KHZ and
* BOOT_CPU_SYSTEM_SPEED_KHZ, respectively. To enable data exchange with the host that is
* not dependent on the targets architecture, the byte ordering needs to be known.
* Setting BOOT_CPU_BYTE_ORDER_MOTOROLA to 1 selects big endian mode and 0 selects
* little endian mode.
*
* Set BOOT_CPU_USER_PROGRAM_START_HOOK to 1 if you would like a hook function to be
* called the moment the user program is about to be started. This could be used to
* de-initialize application specific parts, for example to stop blinking an LED, etc.
*/
/** \brief Frequency of the external crystal oscillator. */
#define BOOT_CPU_XTAL_SPEED_KHZ (8000)
/** \brief Desired system speed. */
#define BOOT_CPU_SYSTEM_SPEED_KHZ (72000)
/** \brief Motorola or Intel style byte ordering. */
#define BOOT_CPU_BYTE_ORDER_MOTOROLA (0)
/** \brief Enable/disable hook function call right before user program start. */
#define BOOT_CPU_USER_PROGRAM_START_HOOK (1)
/****************************************************************************************
* C O M M U N I C A T I O N I N T E R F A C E C O N F I G U R A T I O N
****************************************************************************************/
/* The USB communication interface is selected by setting the BOOT_COM_USB_ENABLE
* configurable to 1. The maximum amount of data bytes in a message for data transmission
* and reception is set through BOOT_COM_USB_TX_MAX_DATA and BOOT_COM_USB_RX_MAX_DATA,
* respectively.
*
*/
/** \brief Enable/disable USB transport layer. */
#define BOOT_COM_USB_ENABLE (1)
/** \brief Configure number of bytes in the target->host data packet. */
#define BOOT_COM_USB_TX_MAX_DATA (63)
/** \brief Configure number of bytes in the host->target data packet. */
#define BOOT_COM_USB_RX_MAX_DATA (63)
/* The RS232 communication interface is selected by setting the BOOT_COM_RS232_ENABLE
* configurable to 1. Configurable BOOT_COM_RS232_BAUDRATE selects the communication speed
* in bits/second. The maximum amount of data bytes in a message for data transmission
* and reception is set through BOOT_COM_RS232_TX_MAX_DATA and BOOT_COM_RS232_RX_MAX_DATA,
* respectively. It is common for a microcontroller to have more than 1 UART interface
* on board. The zero-based BOOT_COM_RS232_CHANNEL_INDEX selects the UART interface.
*
*/
/** \brief Enable/disable UART transport layer. */
#define BOOT_COM_RS232_ENABLE (0)
/** \brief Configure the desired communication speed. */
#define BOOT_COM_RS232_BAUDRATE (57600)
/** \brief Configure number of bytes in the target->host data packet. */
#define BOOT_COM_RS232_TX_MAX_DATA (64)
/** \brief Configure number of bytes in the host->target data packet. */
#define BOOT_COM_RS232_RX_MAX_DATA (64)
/** \brief Select the desired UART peripheral as a zero based index. */
#define BOOT_COM_RS232_CHANNEL_INDEX (1)
/****************************************************************************************
* B A C K D O O R E N T R Y C O N F I G U R A T I O N
****************************************************************************************/
/* It is possible to implement an application specific method to force the bootloader to
* stay active after a reset. Such a backdoor entry into the bootloader is desired in
* situations where the user program does not run properly and therefore cannot
* reactivate the bootloader. By enabling these hook functions, the application can
* implement the backdoor, which overrides the default backdoor entry that is programmed
* into the bootloader. When desired for security purposes, these hook functions can
* also be implemented in a way that disables the backdoor entry altogether.
*/
/** \brief Enable/disable the backdoor override hook functions. */
#define BOOT_BACKDOOR_HOOKS_ENABLE (0)
/****************************************************************************************
* N O N - V O L A T I L E M E M O R Y D R I V E R C O N F I G U R A T I O N
****************************************************************************************/
/* The NVM driver typically supports erase and program operations of the internal memory
* present on the microcontroller. Through these hook functions the NVM driver can be
* extended to support additional memory types such as external flash memory and serial
* eeproms. The size of the internal memory in kilobytes is specified with configurable
* BOOT_NVM_SIZE_KB. If desired the internal checksum writing and verification method can
* be overridden with a application specific method by enabling configuration switch
* BOOT_NVM_CHECKSUM_HOOKS_ENABLE.
*/
/** \brief Enable/disable the NVM hook function for supporting additional memory devices. */
#define BOOT_NVM_HOOKS_ENABLE (0)
/** \brief Configure the size of the default memory device (typically flash EEPROM). */
#define BOOT_NVM_SIZE_KB (256)
/** \brief Enable/disable hooks functions to override the user program checksum handling. */
#define BOOT_NVM_CHECKSUM_HOOKS_ENABLE (0)
/****************************************************************************************
* F L A S H M E M O R Y D R I V E R C O N F I G U R A T I O N
****************************************************************************************/
/** \brief Enable support for a custom flash layout table. It is located in
* flash_layout.c. This was done because the default flashLayout[] table
* in the bootloader's core has more flash memory reserved for the bootloader
* than is needed for this demo.
*/
#define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (1)
/****************************************************************************************
* W A T C H D O G D R I V E R C O N F I G U R A T I O N
****************************************************************************************/
/* The COP driver cannot be configured internally in the bootloader, because its use
* and configuration is application specific. The bootloader does need to service the
* watchdog in case it is used. When the application requires the use of a watchdog,
* set BOOT_COP_HOOKS_ENABLE to be able to initialize and service the watchdog through
* hook functions.
*/
/** \brief Enable/disable the hook functions for controlling the watchdog. */
#define BOOT_COP_HOOKS_ENABLE (1)
/****************************************************************************************
* S E E D / K E Y S E C U R I T Y C O N F I G U R A T I O N
****************************************************************************************/
/* A security mechanism can be enabled in the bootloader's XCP module by setting configu-
* rable BOOT_XCP_SEED_KEY_ENABLE to 1. Before any memory erase or programming
* operations can be performed, access to this resource need to be unlocked.
* In the Microboot settings on tab "XCP Protection" you need to specify a DLL that
* implements the unlocking algorithm. The demo programs are configured for the (simple)
* algorithm in "libseednkey.dll". The source code for this DLL is available so it can be
* customized to your needs.
* During the unlock sequence, Microboot requests a seed from the bootloader, which is in
* the format of a byte array. Using this seed the unlock algorithm in the DLL computes
* a key, which is also a byte array, and sends this back to the bootloader. The
* bootloader then verifies this key to determine if programming and erase operations are
* permitted.
* After enabling this feature the hook functions XcpGetSeedHook() and XcpVerifyKeyHook()
* are called by the bootloader to obtain the seed and to verify the key, respectively.
*/
#define BOOT_XCP_SEED_KEY_ENABLE (0)
#endif /* BLT_CONF_H */
/*********************************** end of blt_conf.h *********************************/