openblt/Target/Source/ARMCM0_XMC1/flash.c

856 lines
37 KiB
C

/************************************************************************************//**
* \file Source\ARMCM0_XMC1\flash.c
* \brief Bootloader flash driver source file.
* \ingroup Target_ARMCM0_XMC1
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2016 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#include "xmc_flash.h" /* Flash driver header */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Value for an invalid flash sector. */
#define FLASH_INVALID_SECTOR (0xff)
/** \brief Value for an invalid flash address. */
#define FLASH_INVALID_ADDRESS (0xffffffff)
/** \brief Standard size of a flash block for writing. It should be large enough so that
* the OpenBLT checksum fits in the first (boot) block). Note that this value
* is set to the hardware defined size of a XMC1 flash page.
*/
#define FLASH_WRITE_BLOCK_SIZE (256)
/** \brief Total numbers of sectors in array flashLayout[]. */
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0]))
/** \brief End address of the bootloader programmable flash. */
#define FLASH_END_ADDRESS (flashLayout[FLASH_TOTAL_SECTORS-1].sector_start + \
flashLayout[FLASH_TOTAL_SECTORS-1].sector_size - 1)
/** \brief Offset into the user program's vector table where the checksum is located.
* For this target it is set to the end of the vector table. Note that the
* value can be overriden in blt_conf.h, because the size of the vector table
* could vary. When changing this value, don't forget to update the location
* of the checksum in the user program accordingly. Otherwise the checksum
* verification will always fail.
*/
#ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET
#define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x018)
#endif
/** \brief Maximum time for a sector erase operation as specified by the XCM1xxx data-
* sheet with an added 20% margin.
*/
#define FLASH_ERASE_TIME_MAX_MS (10)
/** \brief Maximum time for a page program operation as specified by the XCM1xxx data-
* sheet with an added 20% margin.
*/
#define FLASH_PROGRAM_TIME_MAX_MS (5)
/****************************************************************************************
* Plausibility checks
****************************************************************************************/
#if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE)
#error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block."
#endif
#ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE
#define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u)
#endif
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Flash sector descriptor type. */
typedef struct
{
blt_addr sector_start; /**< sector start address */
blt_int32u sector_size; /**< sector size in bytes */
blt_int8u sector_num; /**< sector number */
} tFlashSector;
/** \brief Structure type for grouping flash block information.
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
* flash block manager is implemented in this driver. this flash block manager
* depends on this flash block info structure. It holds the base address of
* the flash block and the data that should be programmed into the flash
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
*/
typedef struct
{
blt_addr base_addr;
blt_int8u data[FLASH_WRITE_BLOCK_SIZE];
} tFlashBlockInfo;
/****************************************************************************************
* Hook functions
****************************************************************************************/
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
extern blt_bool FlashCryptoDecryptDataHook(blt_int8u * data, blt_int32u size);
#endif
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len);
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector);
static blt_int8u FlashGetSector(blt_addr address);
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0
* in blt_conf.h and then implement your own version of the flashLayout[] table
* in a source-file with the name flash_layout.c. This way you customize the
* flash memory size reserved for the bootloader, without having to modify
* the flashLayout[] table in this file directly. This file will then include
* flash_layout.c so there is no need to compile it additionally with your
* project.
*/
#if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0)
/** \brief Array wit the layout of the flash memory.
* \details Also controls what part of the flash memory is reserved for the bootloader.
* If the bootloader size changes, the reserved sectors for the bootloader
* might need adjustment to make sure the bootloader doesn't get overwritten.
* Note that the table contains uncached addresses, because flash program/
* erase operations need to be performed on uncached addresses. This flash
* driver automatically translated cached to uncached addresses, so there
* is no need for the user to adjust this when calling this driver's API.
*/
static const tFlashSector flashLayout[] =
{
/* the space reserved for the bootloader might need updating after changing the
* configuration. enough space should be reserved so that the entire ROM code of
* the bootloader fits in it. this is needed to protect the bootloader from being
* overwritten during a firmware update.
*/
/* { 0x10001000, 0x01000, 1}, flash sector 1 - reserved for bootloader */
/* { 0x10002000, 0x01000, 2}, flash sector 2 - reserved for bootloader */
{ 0x10003000, 0x01000, 3}, /* flash sector 3 - 4kb */
{ 0x10004000, 0x01000, 4}, /* flash sector 4 - 4kb */
{ 0x10005000, 0x01000, 5}, /* flash sector 5 - 4kb */
{ 0x10006000, 0x01000, 6}, /* flash sector 6 - 4kb */
{ 0x10007000, 0x01000, 7}, /* flash sector 7 - 4kb */
{ 0x10008000, 0x01000, 8}, /* flash sector 8 - 4kb */
#if (BOOT_NVM_SIZE_KB > 32)
{ 0x10009000, 0x01000, 9}, /* flash sector 9 - 4kb */
{ 0x1000A000, 0x01000, 10}, /* flash sector 10 - 4kb */
{ 0x1000B000, 0x01000, 11}, /* flash sector 11 - 4kb */
{ 0x1000C000, 0x01000, 12}, /* flash sector 12 - 4kb */
{ 0x1000D000, 0x01000, 13}, /* flash sector 13 - 4kb */
{ 0x1000E000, 0x01000, 14}, /* flash sector 14 - 4kb */
{ 0x1000F000, 0x01000, 15}, /* flash sector 15 - 4kb */
{ 0x10010000, 0x01000, 16}, /* flash sector 16 - 4kb */
#endif
#if (BOOT_NVM_SIZE_KB > 64)
{ 0x10011000, 0x01000, 17}, /* flash sector 17 - 4kb */
{ 0x10012000, 0x01000, 18}, /* flash sector 18 - 4kb */
{ 0x10013000, 0x01000, 19}, /* flash sector 19 - 4kb */
{ 0x10014000, 0x01000, 20}, /* flash sector 20 - 4kb */
{ 0x10015000, 0x01000, 21}, /* flash sector 21 - 4kb */
{ 0x10016000, 0x01000, 22}, /* flash sector 22 - 4kb */
{ 0x10017000, 0x01000, 23}, /* flash sector 23 - 4kb */
{ 0x10018000, 0x01000, 24}, /* flash sector 24 - 4kb */
{ 0x10019000, 0x01000, 25}, /* flash sector 25 - 4kb */
{ 0x1001A000, 0x01000, 26}, /* flash sector 26 - 4kb */
{ 0x1001B000, 0x01000, 27}, /* flash sector 27 - 4kb */
{ 0x1001C000, 0x01000, 28}, /* flash sector 28 - 4kb */
{ 0x1001D000, 0x01000, 29}, /* flash sector 29 - 4kb */
{ 0x1001E000, 0x01000, 30}, /* flash sector 30 - 4kb */
{ 0x1001F000, 0x01000, 31}, /* flash sector 31 - 4kb */
{ 0x10020000, 0x01000, 32}, /* flash sector 32 - 4kb */
#endif
#if (BOOT_NVM_SIZE_KB > 128)
{ 0x10021000, 0x01000, 33}, /* flash sector 33 - 4kb */
{ 0x10022000, 0x01000, 34}, /* flash sector 34 - 4kb */
{ 0x10023000, 0x01000, 35}, /* flash sector 35 - 4kb */
{ 0x10024000, 0x01000, 36}, /* flash sector 36 - 4kb */
{ 0x10025000, 0x01000, 37}, /* flash sector 37 - 4kb */
{ 0x10026000, 0x01000, 38}, /* flash sector 38 - 4kb */
{ 0x10027000, 0x01000, 39}, /* flash sector 39 - 4kb */
{ 0x10028000, 0x01000, 40}, /* flash sector 40 - 4kb */
{ 0x10029000, 0x01000, 41}, /* flash sector 41 - 4kb */
{ 0x1002A000, 0x01000, 42}, /* flash sector 42 - 4kb */
{ 0x1002B000, 0x01000, 43}, /* flash sector 43 - 4kb */
{ 0x1002C000, 0x01000, 44}, /* flash sector 44 - 4kb */
{ 0x1002D000, 0x01000, 45}, /* flash sector 45 - 4kb */
{ 0x1002E000, 0x01000, 46}, /* flash sector 46 - 4kb */
{ 0x1002F000, 0x01000, 47}, /* flash sector 47 - 4kb */
{ 0x10030000, 0x01000, 48}, /* flash sector 48 - 4kb */
{ 0x10031000, 0x01000, 49}, /* flash sector 49 - 4kb */
{ 0x10032000, 0x01000, 50}, /* flash sector 50 - 4kb */
#endif
#if (BOOT_NVM_SIZE_KB > 200)
#error "BOOT_NVM_SIZE_KB > 200 is currently not supported."
#endif
};
#else
#include "flash_layout.c"
#endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Local variable with information about the flash block that is currently
* being operated on.
* \details The smallest amount of flash that can be programmed is
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
* and stores info in this variable. Whenever new data should be flashed, it
* is first added to a RAM buffer, which is part of this variable. Whenever
* the RAM buffer, which has the size of a flash block, is full or data needs
* to be written to a different block, the contents of the RAM buffer are
* programmed to flash. The flash block manager requires some software
* overhead, yet results is faster flash programming because data is first
* harvested, ideally until there is enough to program an entire flash block,
* before the flash device is actually operated on.
*/
static tFlashBlockInfo blockInfo;
/** \brief Local variable with information about the flash boot block.
* \details The first block of the user program holds the vector table, which on the
* STM32 is also the where the checksum is written to. Is it likely that
* the vector table is first flashed and then, at the end of the programming
* sequence, the checksum. This means that this flash block need to be written
* to twice. Normally this is not a problem with flash memory, as long as you
* write the same values to those bytes that are not supposed to be changed
* and the locations where you do write to are still in the erased 0xFF state.
* Unfortunately, writing twice to flash this way, does not work reliably on
* all micros. This is why we need to have an extra block, the bootblock,
* placed under the management of the block manager. This way is it possible
* to implement functionality so that the bootblock is only written to once
* at the end of the programming sequence.
*/
static tFlashBlockInfo bootBlockInfo;
/************************************************************************************//**
** \brief Initializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashInit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashInit ***/
/************************************************************************************//**
** \brief Reinitializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashReinit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashReinit ***/
/************************************************************************************//**
** \brief Writes the data to flash through a flash block manager. Note that this
** function also checks that no data is programmed outside the flash
** memory region, so the bootloader can never be overwritten.
** \param addr Start address.
** \param len Length in bytes.
** \param data Pointer to the data buffer.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data)
{
blt_addr base_addr;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* make sure the addresses are within the flash device */
if ((FlashGetSector(addr) == FLASH_INVALID_SECTOR) || \
(FlashGetSector(addr+len-1) == FLASH_INVALID_SECTOR))
{
return BLT_FALSE;
}
/* if this is the bootblock, then let the boot block manager handle it */
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
if (base_addr == flashLayout[0].sector_start)
{
/* let the boot block manager handle it */
return FlashAddToBlock(&bootBlockInfo, addr, data, len);
}
/* let the block manager handle it */
return FlashAddToBlock(&blockInfo, addr, data, len);
} /*** end of FlashWrite ***/
/************************************************************************************//**
** \brief Erases the flash memory. Note that this function also checks that no
** data is erased outside the flash memory region, so the bootloader can
** never be erased.
** \param addr Start address.
** \param len Length in bytes.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashErase(blt_addr addr, blt_int32u len)
{
blt_int8u first_sector;
blt_int8u last_sector;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* obtain the first and last sector number */
first_sector = FlashGetSector(addr);
last_sector = FlashGetSector(addr+len-1);
/* check them */
if ((first_sector == FLASH_INVALID_SECTOR) || (last_sector == FLASH_INVALID_SECTOR))
{
return BLT_FALSE;
}
/* erase the sectors */
return FlashEraseSectors(first_sector, last_sector);
} /*** end of FlashErase ***/
/************************************************************************************//**
** \brief Writes a checksum of the user program to non-volatile memory. This is
** performed once the entire user program has been programmed. Through
** the checksum, the bootloader can check if the programming session
** was completed, which indicates that a valid user programming is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWriteChecksum(void)
{
blt_int32u signature_checksum = 0;
/* for the XMC1 target we defined the checksum as the Two's complement value of the
* sum of the first 6 exception addresses.
*
* Layout of the vector table:
* 0x10001000 Initial stack pointer
* 0x10001004 Reset Handler
* 0x10001008 Reserved
* 0x1000100C Reserved
* 0x10001010 CLK_VAL1
* 0x10001014 CLK_VAL2
*
* signature_checksum = Two's complement of (SUM(exception address values))
*
* the bootloader writes this 32-bit checksum value right after the vector table
* of the user program. note that this means one extra dummy entry must be added
* at the end of the user program's vector table to reserve storage space for the
* checksum.
*/
/* first check that the bootblock contains valid data. if not, this means the
* bootblock is not part of the reprogramming this time and therefore no
* new checksum needs to be written
*/
if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_TRUE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
/* perform decryption of the bootblock, before calculating the checksum and writing it
* to flash memory.
*/
if (FlashCryptoDecryptDataHook(bootBlockInfo.data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
#endif
/* compute the checksum. note that the user program's vectors are not yet written
* to flash but are present in the bootblock data structure at this point.
*/
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x00]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x04]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x08]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x0C]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x10]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x14]));
signature_checksum = ~signature_checksum; /* one's complement */
signature_checksum += 1; /* two's complement */
/* write the checksum */
return FlashWrite(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET,
sizeof(blt_addr), (blt_int8u *)&signature_checksum);
} /*** end of FlashWriteChecksum ***/
/************************************************************************************//**
** \brief Verifies the checksum, which indicates that a valid user program is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashVerifyChecksum(void)
{
blt_int32u signature_checksum = 0;
/* verify the checksum based on how it was written by CpuWriteChecksum() */
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x04));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x08));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x0C));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x10));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x14));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET));
/* sum should add up to an unsigned 32-bit value of 0 */
if (signature_checksum == 0)
{
/* checksum okay */
return BLT_TRUE;
}
/* checksum incorrect */
return BLT_FALSE;
} /*** end of FlashVerifyChecksum ***/
/************************************************************************************//**
** \brief Finalizes the flash driver operations. There could still be data in
** the currently active block that needs to be flashed.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashDone(void)
{
/* check if there is still data waiting to be programmed in the boot block */
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if there is still data waiting to be programmed */
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* still here so all is okay */
return BLT_TRUE;
} /*** end of FlashDone ***/
/************************************************************************************//**
** \brief Obtains the base address of the flash memory available to the user program.
** This is basically the first address in the flashLayout table.
** \return Base address.
**
****************************************************************************************/
blt_addr FlashGetUserProgBaseAddress(void)
{
return flashLayout[0].sector_start;
} /*** end of FlashGetUserProgBaseAddress ***/
/************************************************************************************//**
** \brief Copies data currently in flash to the block->data and sets the
** base address.
** \param block Pointer to flash block info structure to operate on.
** \param address Base address of the block data.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
{
/* check address alignment */
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* make sure that we are initializing a new block and not the same one */
if (block->base_addr == address)
{
/* block already initialized, so nothing to do */
return BLT_TRUE;
}
/* set the base address and copies the current data from flash */
block->base_addr = address;
CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE);
return BLT_TRUE;
} /*** end of FlashInitBlock ***/
/************************************************************************************//**
** \brief Switches blocks by programming the current one and initializing the
** next.
** \param block Pointer to flash block info structure to operate on.
** \param base_addr Base address of the next block.
** \return The pointer of the block info struct that is no being used, or a NULL
** pointer in case of error.
**
****************************************************************************************/
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
{
/* check if a switch needs to be made away from the boot block. in this case the boot
* block shouldn't be written yet, because this is done at the end of the programming
* session by FlashDone(), this is right after the checksum was written.
*/
if (block == &bootBlockInfo)
{
/* switch from the boot block to the generic block info structure */
block = &blockInfo;
}
/* check if a switch back into the bootblock is needed. in this case the generic block
* doesn't need to be written here yet.
*/
else if (base_addr == flashLayout[0].sector_start)
{
/* switch from the generic block to the boot block info structure */
block = &bootBlockInfo;
base_addr = flashLayout[0].sector_start;
}
else
{
/* need to switch to a new block, so program the current one and init the next */
if (FlashWriteBlock(block) == BLT_FALSE)
{
return BLT_NULL;
}
}
/* initialize tne new block when necessary */
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
{
return BLT_NULL;
}
/* still here to all is okay */
return block;
} /*** end of FlashSwitchBlock ***/
/************************************************************************************//**
** \brief Programming is done per block. This function adds data to the block
** that is currently collecting data to be written to flash. If the
** address is outside of the current block, the current block is written
** to flash an a new block is initialized.
** \param block Pointer to flash block info structure to operate on.
** \param address Flash destination address.
** \param data Pointer to the byte array with data.
** \param len Number of bytes to add to the block.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len)
{
blt_addr current_base_addr;
blt_int8u *dst;
blt_int8u *src;
/* determine the current base address */
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
/* initialize the blockInfo struct for the current block */
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if the new data fits in the current block */
if (block->base_addr != current_base_addr)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
}
/* add the data to the current block, but check for block overflow */
dst = &(block->data[address - block->base_addr]);
src = data;
do
{
/* keep the watchdog happy */
CopService();
/* buffer overflow? */
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
/* reset destination pointer */
dst = &(block->data[0]);
}
/* write the data to the buffer */
*dst = *src;
/* update pointers */
dst++;
src++;
/* decrement byte counter */
len--;
}
while (len > 0);
/* still here so all is good */
return BLT_TRUE;
} /*** end of FlashAddToBlock ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
** array.
** \param block Pointer to flash block info structure to operate on.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
{
blt_int32u timeoutTime;
blt_int32u byteIdx;
/* check that address is actually within flash */
if (FlashGetSector(block->base_addr) == FLASH_INVALID_SECTOR)
{
return BLT_FALSE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
#if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0)
/* note that the bootblock is already decrypted in FlashWriteChecksum(), if the
* internal checksum mechanism is used. Therefore don't decrypt it again.
*/
if (block != &bootBlockInfo)
#endif
{
/* perform decryption of the program data before writing it to flash memory. */
if (FlashCryptoDecryptDataHook(block->data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
}
#endif
/* clear the previous error states. should always be done before program/erase */
XMC_FLASH_ClearStatus();
/* determine timeout time of the operation */
timeoutTime = TimerGet() + FLASH_PROGRAM_TIME_MAX_MS;
/* program the block in one go */
XMC_FLASH_ProgramPage((uint32_t *)block->base_addr, (const uint32_t *)block->data);
/* wait for the flash operation to complete */
while (XMC_FLASH_IsBusy() > 0)
{
/* check for operation timeout */
if (TimerGet() > timeoutTime)
{
/* timeout occurred. cannot continue */
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
}
/* check the result */
if (XMC_FLASH_GetStatus() != XMC_FLASH_STATUS_OK)
{
/* error occurred during flash erase, abort */
return BLT_FALSE;
}
/* verify that the data was correctly programmed */
for (byteIdx=0; byteIdx < FLASH_WRITE_BLOCK_SIZE; byteIdx++)
{
if (*((volatile blt_int8u *)(block->base_addr+byteIdx)) != block->data[byteIdx])
{
/* program verification failed. abort */
return BLT_FALSE;
}
}
/* still here so all is okay */
return BLT_TRUE;
} /*** end of FlashWriteBlock ***/
/************************************************************************************//**
** \brief Erases the flash sectors from first_sector up until last_sector.
** \param first_sector First flash sector number.
** \param last_sector Last flash sector number.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector)
{
blt_int8u sector_cnt;
blt_addr sectorBaseAddr;
blt_int32u timeoutTime;
/* validate the sector numbers */
if (first_sector > last_sector)
{
return BLT_FALSE;
}
if ((first_sector < flashLayout[0].sector_num) || \
(last_sector > flashLayout[FLASH_TOTAL_SECTORS-1].sector_num))
{
return BLT_FALSE;
}
/* erase all sectors one by one */
for (sector_cnt=first_sector; sector_cnt<= last_sector; sector_cnt++)
{
/* keep the watchdog happy */
CopService();
/* submit the sector erase request by specifying its start address */
sectorBaseAddr = FlashGetSectorBaseAddr(sector_cnt);
if (sectorBaseAddr == FLASH_INVALID_ADDRESS)
{
/* not a valid sector address so abort */
return BLT_FALSE;
}
/* clear the previous error states. should always be done before program/erase */
XMC_FLASH_ClearStatus();
/* determine timeout time of the operation */
timeoutTime = TimerGet() + FLASH_ERASE_TIME_MAX_MS;
/* start erase operation */
XMC_FLASH_EraseSector((uint32_t *)sectorBaseAddr);
/* wait for the flash operation to complete */
while (XMC_FLASH_IsBusy() > 0)
{
/* check for operation timeout */
if (TimerGet() > timeoutTime)
{
/* timeout occurred. cannot continue */
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
}
/* check the result */
if (XMC_FLASH_GetStatus() != XMC_FLASH_STATUS_OK)
{
/* error occurred during flash erase, abort */
return BLT_FALSE;
}
}
/* still here so all went okay */
return BLT_TRUE;
} /*** end of FlashEraseSectors ***/
/************************************************************************************//**
** \brief Determines the flash sector the address is in.
** \param address Address in the flash sector.
** \return Flash sector number or FLASH_INVALID_SECTOR.
**
****************************************************************************************/
static blt_int8u FlashGetSector(blt_addr address)
{
blt_int8u sectorIdx;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
/* is the address in this sector? */
if ((address >= flashLayout[sectorIdx].sector_start) && \
(address < (flashLayout[sectorIdx].sector_start + \
flashLayout[sectorIdx].sector_size)))
{
/* return the sector number */
return flashLayout[sectorIdx].sector_num;
}
}
/* still here so no valid sector found */
return FLASH_INVALID_SECTOR;
} /*** end of FlashGetSector ***/
/************************************************************************************//**
** \brief Obtains the base address of the specified sector.
** \param sector Sector to get the base address of.
** \return Base Base address of the sector if found, FLASH_INVALID_ADDRESS otherwise.
**
****************************************************************************************/
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector)
{
blt_int8u sectorIdx;
blt_addr baseAddr;
/* initialize base address to invalid */
baseAddr = FLASH_INVALID_ADDRESS;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
/* is this the sector that was specified? */
if (flashLayout[sectorIdx].sector_num == sector)
{
/* read out its base address and stop the loop */
baseAddr = flashLayout[sectorIdx].sector_start;
break;
}
}
/* return the results */
return baseAddr;
} /*** end of FlashGetSectorBaseAddr ***/
/*********************************** end of flash.c ************************************/