openblt/Target/Demo/ARMCM7_STM32H7_Nucleo_H743Z.../Boot/lib/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_utils.c

976 lines
45 KiB
C

/**
******************************************************************************
* @file stm32h7xx_ll_utils.c
* @author MCD Application Team
* @brief UTILS LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_ll_utils.h"
#include "stm32h7xx_ll_rcc.h"
#include "stm32h7xx_ll_pwr.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32H7xx_LL_Driver
* @{
*/
/** @addtogroup UTILS_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Constants
* @{
*/
#if (POWER_DOMAINS_NUMBER == 3U)
#define UTILS_MAX_FREQUENCY_SCALE1 400000000U /*!< Maximum frequency for system clock at power scale1, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE2 300000000U /*!< Maximum frequency for system clock at power scale2, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE3 200000000U /*!< Maximum frequency for system clock at power scale3, in Hz */
#else
#define UTILS_MAX_FREQUENCY_SCALE0 280000000U /*!< Maximum frequency for system clock at power scale0, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE1 225000000U /*!< Maximum frequency for system clock at power scale1, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE2 160000000U /*!< Maximum frequency for system clock at power scale2, in Hz */
#define UTILS_MAX_FREQUENCY_SCALE3 88000000U /*!< Maximum frequency for system clock at power scale3, in Hz */
#endif /*POWER_DOMAINS_NUMBER == 3U*/
/* Defines used for PLL range */
#define UTILS_PLLVCO_INPUT_MIN1 1000000U /*!< Frequency min for the low range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MAX1 2000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MIN2 2000000U /*!< Frequency min for the low range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MAX2 4000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MIN3 4000000U /*!< Frequency min for the low range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MAX3 8000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MIN4 8000000U /*!< Frequency min for the low range PLLVCO input, in Hz */
#define UTILS_PLLVCO_INPUT_MAX4 16000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */
#if (POWER_DOMAINS_NUMBER == 3U)
#define UTILS_PLLVCO_MEDIUM_OUTPUT_MIN 150000000U /*!< Frequency min for the medium range PLLVCO output, in Hz */
#define UTILS_PLLVCO_WIDE_OUTPUT_MIN 192000000U /*!< Frequency min for the wide range PLLVCO output, in Hz */
#define UTILS_PLLVCO_MEDIUM_OUTPUT_MAX 420000000U /*!< Frequency max for the medium range PLLVCO output, in Hz */
#define UTILS_PLLVCO_WIDE_OUTPUT_MAX 836000000U /*!< Frequency max for the wide range PLLVCO output, in Hz */
#else
#define UTILS_PLLVCO_MEDIUM_OUTPUT_MIN 150000000U /*!< Frequency min for the medium range PLLVCO output, in Hz */
#define UTILS_PLLVCO_WIDE_OUTPUT_MIN 128000000U /*!< Frequency min for the wide range PLLVCO output, in Hz */
#define UTILS_PLLVCO_MEDIUM_OUTPUT_MAX 420000000U /*!< Frequency max for the medium range PLLVCO output, in Hz */
#define UTILS_PLLVCO_WIDE_OUTPUT_MAX 560000000U /*!< Frequency max for the wide range PLLVCO output, in Hz */
#endif /*POWER_DOMAINS_NUMBER == 3U*/
/* Defines used for HSE range */
#define UTILS_HSE_FREQUENCY_MIN 4000000U /*!< Frequency min for HSE frequency, in Hz */
#define UTILS_HSE_FREQUENCY_MAX 48000000U /*!< Frequency max for HSE frequency, in Hz */
/* Defines used for FLASH latency according to HCLK Frequency */
#if (POWER_DOMAINS_NUMBER == 2U)
#define UTILS_SCALE0_LATENCY0_FREQ 44000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 0 */
#define UTILS_SCALE0_LATENCY1_FREQ 88000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 0 */
#define UTILS_SCALE0_LATENCY2_FREQ 132000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 0 */
#define UTILS_SCALE0_LATENCY3_FREQ 176000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 0 */
#define UTILS_SCALE0_LATENCY4_FREQ 220000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 0 */
#define UTILS_SCALE0_LATENCY5_FREQ 264000000U /*!< HCLK frequency to set FLASH latency 5 in power scale 0 */
#define UTILS_SCALE0_LATENCY6_FREQ 280000000U /*!< HCLK frequency to set FLASH latency 6 in power scale 0 */
#define UTILS_SCALE1_LATENCY0_FREQ 42000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 1 */
#define UTILS_SCALE1_LATENCY1_FREQ 84000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */
#define UTILS_SCALE1_LATENCY2_FREQ 126000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */
#define UTILS_SCALE1_LATENCY3_FREQ 168000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */
#define UTILS_SCALE1_LATENCY4_FREQ 210000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 1 */
#define UTILS_SCALE1_LATENCY5_FREQ 225000000U /*!< HCLK frequency to set FLASH latency 5 in power scale 1 */
#define UTILS_SCALE2_LATENCY0_FREQ 34000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 2 */
#define UTILS_SCALE2_LATENCY1_FREQ 68000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */
#define UTILS_SCALE2_LATENCY2_FREQ 102000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */
#define UTILS_SCALE2_LATENCY3_FREQ 136000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */
#define UTILS_SCALE2_LATENCY4_FREQ 160000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 2 */
#define UTILS_SCALE3_LATENCY0_FREQ 22000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 3 */
#define UTILS_SCALE3_LATENCY1_FREQ 44000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */
#define UTILS_SCALE3_LATENCY2_FREQ 66000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */
#define UTILS_SCALE3_LATENCY3_FREQ 88000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */
#else
#define UTILS_SCALE1_LATENCY0_FREQ 70000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 1 */
#define UTILS_SCALE1_LATENCY1_FREQ 140000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */
#define UTILS_SCALE1_LATENCY2_FREQ 210000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */
#define UTILS_SCALE2_LATENCY0_FREQ 55000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 2 */
#define UTILS_SCALE2_LATENCY1_FREQ 110000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */
#define UTILS_SCALE2_LATENCY2_FREQ 165000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */
#define UTILS_SCALE2_LATENCY3_FREQ 220000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */
#define UTILS_SCALE3_LATENCY0_FREQ 45000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 3 */
#define UTILS_SCALE3_LATENCY1_FREQ 90000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */
#define UTILS_SCALE3_LATENCY2_FREQ 135000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */
#define UTILS_SCALE3_LATENCY3_FREQ 180000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */
#define UTILS_SCALE3_LATENCY4_FREQ 225000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 3 */
#endif /*POWER_DOMAINS_NUMBER == 2U*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup UTILS_LL_Private_Macros
* @{
*/
#define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \
|| ((__VALUE__) == LL_RCC_SYSCLK_DIV_512))
#define IS_LL_UTILS_AHB_DIV(__VALUE__) (((__VALUE__) == LL_RCC_AHB_DIV_1) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_2) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_4) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_8) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_16) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_64) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_128) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_256) \
|| ((__VALUE__) == LL_RCC_AHB_DIV_512))
#define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB1_DIV_16))
#define IS_LL_UTILS_APB2_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB2_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB2_DIV_16))
#define IS_LL_UTILS_APB3_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB3_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB3_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB3_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB3_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB3_DIV_16))
#define IS_LL_UTILS_APB4_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB4_DIV_1) \
|| ((__VALUE__) == LL_RCC_APB4_DIV_2) \
|| ((__VALUE__) == LL_RCC_APB4_DIV_4) \
|| ((__VALUE__) == LL_RCC_APB4_DIV_8) \
|| ((__VALUE__) == LL_RCC_APB4_DIV_16))
#define IS_LL_UTILS_PLLM_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 63U))
#if (POWER_DOMAINS_NUMBER == 3U)
#define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((4U <= (__VALUE__)) && ((__VALUE__) <= 512U))
#else
#define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((8U <= (__VALUE__)) && ((__VALUE__) <= 420U))
#endif /*POWER_DOMAINS_NUMBER == 3U*/
#define IS_LL_UTILS_PLLP_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 128U))
#define IS_LL_UTILS_FRACN_VALUE(__VALUE__) ((__VALUE__) <= 0x1FFFU)
#define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__, __RANGE__) ( \
(((__RANGE__) == LL_RCC_PLLINPUTRANGE_1_2) && (UTILS_PLLVCO_INPUT_MIN1 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX1)) || \
(((__RANGE__) == LL_RCC_PLLINPUTRANGE_2_4) && (UTILS_PLLVCO_INPUT_MIN2 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX2)) || \
(((__RANGE__) == LL_RCC_PLLINPUTRANGE_4_8) && (UTILS_PLLVCO_INPUT_MIN3 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX3)) || \
(((__RANGE__) == LL_RCC_PLLINPUTRANGE_8_16) && (UTILS_PLLVCO_INPUT_MIN4 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX4)))
#define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__, __RANGE__) ( \
(((__RANGE__) == LL_RCC_PLLVCORANGE_MEDIUM) && (UTILS_PLLVCO_MEDIUM_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_MEDIUM_OUTPUT_MAX)) || \
(((__RANGE__) == LL_RCC_PLLVCORANGE_WIDE) && (UTILS_PLLVCO_WIDE_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_WIDE_OUTPUT_MAX)))
#define IS_LL_UTILS_CHECK_VCO_RANGES(__RANGEIN__, __RANGEOUT__) ( \
(((__RANGEIN__) == LL_RCC_PLLINPUTRANGE_1_2) && ((__RANGEOUT__) == LL_RCC_PLLVCORANGE_MEDIUM)) || \
(((__RANGEIN__) != LL_RCC_PLLINPUTRANGE_1_2) && ((__RANGEOUT__) == LL_RCC_PLLVCORANGE_WIDE)))
#if (POWER_DOMAINS_NUMBER == 3U)
#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \
(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \
((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3))
#else
#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE0) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE0) : \
(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \
(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \
((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3))
#endif /*POWER_DOMAINS_NUMBER == 3U*/
#define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \
|| ((__STATE__) == LL_UTILS_HSEBYPASS_OFF))
#define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN) && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup UTILS_LL_Private_Functions UTILS Private functions
* @{
*/
static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct);
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
static ErrorStatus UTILS_IsPLLsReady(void);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup UTILS_LL_Exported_Functions
* @{
*/
/** @addtogroup UTILS_LL_EF_DELAY
* @{
*/
#if defined (DUAL_CORE)
/**
* @brief This function configures the Cortex-M SysTick source to have 1ms time base.
* @note When a RTOS is used, it is recommended to avoid changing the Systick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param CPU_Frequency Core frequency in Hz
* @note CPU_Frequency can be calculated thanks to RCC helper macro or function
* @ref LL_RCC_GetSystemClocksFreq
* LL_RCC_GetSystemClocksFreq() is used to calculate the CM7 clock frequency
* and __LL_RCC_CALC_HCLK_FREQ is used to caluclate the CM4 clock frequency.
* @retval None
*/
#else
/**
* @brief This function configures the Cortex-M SysTick source to have 1ms time base.
* @note When a RTOS is used, it is recommended to avoid changing the Systick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param CPU_Frequency Core frequency in Hz
* @note CPU_Frequency can be calculated thanks to RCC helper macro or function
* @ref LL_RCC_GetSystemClocksFreq
* @retval None
*/
#endif /* DUAL_CORE */
void LL_Init1msTick(uint32_t CPU_Frequency)
{
/* Use frequency provided in argument */
LL_InitTick(CPU_Frequency, 1000U);
}
/**
* @brief This function provides accurate delay (in milliseconds) based
* on SysTick counter flag
* @note When a RTOS is used, it is recommended to avoid using blocking delay
* and use rather osDelay service.
* @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which
* will configure Systick to 1ms
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
void LL_mDelay(uint32_t Delay)
{
uint32_t count = Delay;
__IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */
/* Add this code to indicate that local variable is not used */
((void)tmp);
/* Add a period to guaranty minimum wait */
if(count < LL_MAX_DELAY)
{
count++;
}
while (count != 0U)
{
if((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U)
{
count--;
}
}
}
/**
* @}
*/
/** @addtogroup UTILS_EF_SYSTEM
* @brief System Configuration functions
*
@verbatim
===============================================================================
##### System Configuration functions #####
===============================================================================
[..]
System, AHB and APB buses clocks configuration
#if (POWER_DOMAINS_NUMBER == 3U)
(+) The maximum frequency of the SYSCLK is 400 MHz and HCLK is 200 MHz.
(+) The maximum frequency of the PCLK1, PCLK2, PCLK3 and PCLK4 is 100 MHz.
@endverbatim
@internal
Depending on the device voltage range, the maximum frequency should be
adapted accordingly:
(++) +----------------------------------------------------------------------------+
(++) | Wait states | HCLK clock frequency (MHz) |
(++) | |-----------------------------------------------------------|
(++) | (Latency) | voltage range 1 | voltage range 2 | voltage range 3 |
(++) | | 1.15V - 1.26V | 1.05V - 1.15V | 0.95V - 1.05V |
(++) |----------------|-------------------|-------------------|-------------------|
(++) |0WS(1CPU cycle) | 0 < HCLK <= 70 | 0 < HCLK <= 55 | 0 < HCLK <= 45 |
(++) |----------------|-------------------|-------------------|-------------------|
(++) |1WS(2CPU cycle) | 70 < HCLK <= 140 | 55 < HCLK <= 110 | 45 < HCLK <= 90 |
(++) |----------------|-------------------|-------------------|-------------------|
(++) |2WS(3CPU cycle) | 140 < HCLK <= 210 | 110 < HCLK <= 165 | 90 < HCLK <= 135 |
(++) |----------------|-------------------|-------------------|-------------------|
(++) |3WS(4CPU cycle) | -- | 165 < HCLK <= 220 | 135 < HCLK <= 180 |
(++) |----------------|-------------------|-------------------|-------------------|
(++) |4WS(5CPU cycle) | -- | -- | 180 < HCLK <= 225 |
(++) +----------------------------------------------------------------------------+
#else
(+) The maximum frequency of the SYSCLK is 280 MHz and HCLK is 280 MHz.
(+) The maximum frequency of the PCLK1, PCLK2, PCLK3 and PCLK4 is 140 MHz.
@endverbatim
@internal
Depending on the device voltage range, the maximum frequency should be
adapted accordingly:
(++) +------------------------------------------------------------------------------------------------+
(++) | Wait states | HCLK clock frequency (MHz) |
(++) | |-------------------------------------------------------------------------------|
(++) | (Latency) | voltage range 0 | voltage range 1 | voltage range 2 | voltage range 3 |
(++) | | 1.26V - 1.35V | 1.15V - 1.26V | 1.05V - 1.15V | 0.95V - 1.05V |
(++) |----------------|-------------------|-------------------|-------------------|-------------------|
(++) |0WS(1CPU cycle) | 0 < HCLK <= 44 | 0 < HCLK <= 42 | 0 < HCLK <= 34 | 0 < HCLK <= 22 |
(++) |----------------|-------------------|-------------------|-------------------|-------------------|
(++) |1WS(2CPU cycle) | 44 < HCLK <= 88 | 42 < HCLK <= 84 | 34 < HCLK <= 68 | 22 < HCLK <= 44 |
(++) |----------------|-------------------|-------------------|-------------------|-------------------|
(++) |2WS(3CPU cycle) | 88 < HCLK <= 132 | 84 < HCLK <= 126 | 68 < HCLK <= 102 | 44 < HCLK <= 66 |
(++) |----------------|-------------------|-------------------|-------------------|-------------------|
(++) |3WS(4CPU cycle) | 132 < HCLK <= 176 | 126 < HCLK <= 168 | 102 < HCLK <= 136 | 66 < HCLK <= 88 |
(++) |----------------|-------------------|-------------------|-------------------|-------------------|
(++) |4WS(5CPU cycle) | 176 < HCLK <= 220 | 168 < HCLK <= 210 | 136 < HCLK <= 160 | -- |
(++) +------------------------------------------------------------------------------------------------+
(++) |5WS(6CPU cycle) | 220 < HCLK <= 264 | 210 < HCLK <= 225 | -- | -- |
(++) +------------------------------------------------------------------------------------------------+
(++) |6WS(7CPU cycle) | 264 < HCLK <= 280 | -- | -- | -- |
(++) +------------------------------------------------------------------------------------------------+
(++) |7WS(8CPU cycle) | -- | -- | -- | -- |
(++) +------------------------------------------------------------------------------------------------+
#endif
@endinternal
* @{
*/
#if defined (DUAL_CORE)
/**
* @brief This function sets directly SystemCoreClock CMSIS variable.
* @note Variable can be calculated also through SystemCoreClockUpdate function.
* @param CPU_Frequency Core frequency in Hz
* @note CPU_Frequency can be calculated thanks to RCC helper macro or function
* @ref LL_RCC_GetSystemClocksFreq
* LL_RCC_GetSystemClocksFreq() is used to calculate the CM7 clock frequency
* and __LL_RCC_CALC_HCLK_FREQ is used to caluclate the CM4 clock frequency.
* @retval None
*/
#else
/**
* @brief This function sets directly SystemCoreClock CMSIS variable.
* @note Variable can be calculated also through SystemCoreClockUpdate function.
* @param CPU_Frequency Core frequency in Hz
* @note CPU_Frequency can be calculated thanks to RCC helper macro or function
* @ref LL_RCC_GetSystemClocksFreq
* @retval None
*/
#endif /* DUAL_CORE */
void LL_SetSystemCoreClock(uint32_t CPU_Frequency)
{
/* HCLK clock frequency */
SystemCoreClock = CPU_Frequency;
}
/**
* @brief This function configures system clock at maximum frequency with HSI as clock source of the PLL
* @note The application need to ensure that PLL is disabled.
* @note Function is based on the following formula:
* - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP)
* - PLLM: ensure that the VCO input frequency ranges from 1 to 16 MHz (PLLVCO_input = HSI frequency / PLLM)
* - PLLN: ensure that the VCO output frequency is between 150 and 836 MHz or 128 to 560 MHz(*) (PLLVCO_output = PLLVCO_input * PLLN)
* - PLLP: ensure that max frequency at 400000000 Hz or 280000000 Hz is reach (PLLVCO_output / PLLP)
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Max frequency configuration done
* - ERROR: Max frequency configuration not done
*
* (*) : For stm32h7a3xx, stm32h7b3xx and stm32h7b0xx family lines.
*
*/
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status;
#ifdef USE_FULL_ASSERT
uint32_t vcoinput_freq, vcooutput_freq;
#endif
uint32_t pllfreq, hsi_clk;
/* Check the parameters */
assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM));
assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN));
assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP));
assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN));
hsi_clk = (HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos));
/* Check VCO Input frequency */
#ifdef USE_FULL_ASSERT
vcoinput_freq = hsi_clk / UTILS_PLLInitStruct->PLLM;
#endif
assert_param(IS_LL_UTILS_PLLVCO_INPUT(vcoinput_freq, UTILS_PLLInitStruct->VCO_Input));
/* Check VCO Output frequency */
#ifdef USE_FULL_ASSERT
vcooutput_freq = LL_RCC_CalcPLLClockFreq(hsi_clk, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, 1UL);
#endif
assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(vcooutput_freq, UTILS_PLLInitStruct->VCO_Output));
/* Check VCO Input ranges */
assert_param(IS_LL_UTILS_CHECK_VCO_RANGES(UTILS_PLLInitStruct->VCO_Input, UTILS_PLLInitStruct->VCO_Output));
/* Check if one of the PLL is enabled */
if(UTILS_IsPLLsReady() == SUCCESS)
{
/* Calculate the new PLL output frequency */
pllfreq = UTILS_GetPLLOutputFrequency(hsi_clk, UTILS_PLLInitStruct);
/* Enable HSI if not enabled */
if(LL_RCC_HSI_IsReady() != 1U)
{
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1U)
{
/* Wait for HSI ready */
}
}
/* Configure PLL */
LL_RCC_PLL1P_Enable();
LL_RCC_PLL1FRACN_Enable();
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);
LL_RCC_PLL1_SetVCOInputRange(UTILS_PLLInitStruct->VCO_Input);
LL_RCC_PLL1_SetVCOOutputRange(UTILS_PLLInitStruct->VCO_Output);
LL_RCC_PLL1_SetM(UTILS_PLLInitStruct->PLLM);
LL_RCC_PLL1_SetN(UTILS_PLLInitStruct->PLLN);
LL_RCC_PLL1_SetP(UTILS_PLLInitStruct->PLLP);
LL_RCC_PLL1_SetFRACN(UTILS_PLLInitStruct->FRACN);
/* Enable PLL and switch system clock to PLL */
status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
}
else
{
/* Current PLL configuration cannot be modified */
status = ERROR;
}
return status;
}
/**
* @brief This function configures system clock with HSE as clock source of the PLL
* @note The application need to ensure that PLL is disabled.
* @note Function is based on the following formula:
* - PLL output frequency = (((HSE frequency / PLLM) * PLLN) / PLLP)
* - PLLM: ensure that the VCO input frequency ranges from 0.95 to 2.10 MHz (PLLVCO_input = HSE frequency / PLLM)
* - PLLN: ensure that the VCO output frequency is between 150 and 836 MHz or 128 to 560 MHz(*) (PLLVCO_output = PLLVCO_input * PLLN)
* - PLLP: ensure that max frequency at 400000000 Hz or 280000000 Hz(*) is reached (PLLVCO_output / PLLP)
* @param HSEFrequency Value between Min_Data = 4000000 and Max_Data = 48000000
* @param HSEBypass This parameter can be one of the following values:
* @arg @ref LL_UTILS_HSEBYPASS_ON
* @arg @ref LL_UTILS_HSEBYPASS_OFF
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Max frequency configuration done
* - ERROR: Max frequency configuration not done
*
* (*) : For stm32h7a3xx, stm32h7b3xx and stm32h7b0xx family lines.
*
*/
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status;
#ifdef USE_FULL_ASSERT
uint32_t vcoinput_freq, vcooutput_freq;
#endif
uint32_t pllfreq;
/* Check the parameters */
assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM));
assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN));
assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP));
assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN));
assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency));
assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass));
/* Check VCO Input frequency */
#ifdef USE_FULL_ASSERT
vcoinput_freq = HSEFrequency / UTILS_PLLInitStruct->PLLM;
#endif
assert_param(IS_LL_UTILS_PLLVCO_INPUT(vcoinput_freq, UTILS_PLLInitStruct->VCO_Input));
/* Check VCO output frequency */
#ifdef USE_FULL_ASSERT
vcooutput_freq = LL_RCC_CalcPLLClockFreq(HSEFrequency, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, 1U);
#endif
assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(vcooutput_freq, UTILS_PLLInitStruct->VCO_Output));
/* Check VCO Input/output ranges compatibility */
assert_param(IS_LL_UTILS_CHECK_VCO_RANGES(UTILS_PLLInitStruct->VCO_Input, UTILS_PLLInitStruct->VCO_Output));
/* Check if one of the PLL is enabled */
if(UTILS_IsPLLsReady() == SUCCESS)
{
/* Calculate the new PLL output frequency */
pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct);
/* Enable HSE if not enabled */
if(LL_RCC_HSE_IsReady() != 1U)
{
/* Check if need to enable HSE bypass feature or not */
if(HSEBypass == LL_UTILS_HSEBYPASS_ON)
{
LL_RCC_HSE_EnableBypass();
}
else
{
LL_RCC_HSE_DisableBypass();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1U)
{
/* Wait for HSE ready */
}
}
/* Configure PLL */
LL_RCC_PLL1P_Enable();
LL_RCC_PLL1FRACN_Enable();
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
LL_RCC_PLL1_SetVCOInputRange(UTILS_PLLInitStruct->VCO_Input);
LL_RCC_PLL1_SetVCOOutputRange(UTILS_PLLInitStruct->VCO_Output);
LL_RCC_PLL1_SetM(UTILS_PLLInitStruct->PLLM);
LL_RCC_PLL1_SetN(UTILS_PLLInitStruct->PLLN);
LL_RCC_PLL1_SetP(UTILS_PLLInitStruct->PLLP);
LL_RCC_PLL1_SetFRACN(UTILS_PLLInitStruct->FRACN);
/* Enable PLL and switch system clock to PLL */
status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct);
}
else
{
/* Current PLL configuration cannot be modified */
status = ERROR;
}
return status;
}
/**
* @}
*/
/**
* @brief Update number of Flash wait states in line with new frequency and current
voltage range.
* @param HCLK_Frequency HCLK frequency
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Latency has been modified
* - ERROR: Latency cannot be modified
*/
ErrorStatus LL_SetFlashLatency(uint32_t HCLK_Frequency)
{
ErrorStatus status = SUCCESS;
uint32_t timeout;
uint32_t getlatency;
uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */
/* Frequency cannot be equal to 0 */
if (HCLK_Frequency == 0U)
{
status = ERROR;
}
else
{
#if (POWER_DOMAINS_NUMBER == 2U)
if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE0)
{
if((HCLK_Frequency > UTILS_SCALE0_LATENCY5_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY6_FREQ))
{
/* 264 < HCLK <= 280 => 6WS (7 CPU cycles) */
latency = LL_FLASH_LATENCY_6;
}
else if((HCLK_Frequency > UTILS_SCALE0_LATENCY4_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY5_FREQ))
{
/* 220 < HCLK <= 264 => 5WS (6 CPU cycles) */
latency = LL_FLASH_LATENCY_5;
}
else if((HCLK_Frequency > UTILS_SCALE0_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY4_FREQ))
{
/* 176 < HCLK <= 220 => 4WS (5 CPU cycles) */
latency = LL_FLASH_LATENCY_4;
}
else if((HCLK_Frequency > UTILS_SCALE0_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY3_FREQ))
{
/* 132 < HCLK <= 176 => 3WS (4 CPU cycles) */
latency = LL_FLASH_LATENCY_3;
}
else if((HCLK_Frequency > UTILS_SCALE0_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY2_FREQ))
{
/* 88 < HCLK <= 132 => 2WS (3 CPU cycles) */
latency = LL_FLASH_LATENCY_2;
}
else if((HCLK_Frequency > UTILS_SCALE0_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY1_FREQ))
{
/* 44 < HCLK <= 88 => 1WS (2 CPU cycles) */
latency = LL_FLASH_LATENCY_1;
}
else if(HCLK_Frequency <= UTILS_SCALE0_LATENCY0_FREQ)
{
/* HCLK <= 44 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */
}
else
{
status = ERROR;
}
}
else if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1)
{
if((HCLK_Frequency > UTILS_SCALE1_LATENCY4_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY5_FREQ))
{
/* 210 < HCLK <= 225 => 5WS (6 CPU cycles) */
latency = LL_FLASH_LATENCY_5;
}
else if((HCLK_Frequency > UTILS_SCALE1_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY4_FREQ))
{
/* 168 < HCLK <= 210 => 4WS (5 CPU cycles) */
latency = LL_FLASH_LATENCY_4;
}
else if((HCLK_Frequency > UTILS_SCALE1_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY3_FREQ))
{
/* 126 < HCLK <= 168 => 3WS (4 CPU cycles) */
latency = LL_FLASH_LATENCY_3;
}
else if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ))
#else
if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1)
{
if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ))
#endif /*POWER_DOMAINS_NUMBER == 2U*/
{
/* 140 < HCLK <= 210 => 2WS (3 CPU cycles) */
latency = LL_FLASH_LATENCY_2;
}
else if((HCLK_Frequency > UTILS_SCALE1_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY1_FREQ))
{
/* 70 < HCLK <= 140 => 1WS (2 CPU cycles) */
latency = LL_FLASH_LATENCY_1;
}
else if(HCLK_Frequency <= UTILS_SCALE1_LATENCY0_FREQ)
{
/* HCLK <= 70 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */
}
else
{
status = ERROR;
}
}
else if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2)
{
#if (POWER_DOMAINS_NUMBER == 2U)
if((HCLK_Frequency > UTILS_SCALE2_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY4_FREQ))
{
/* 136 < HCLK <= 160 => 4WS (5 CPU cycles) */
latency = LL_FLASH_LATENCY_4;
}
else if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ))
#else
if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ))
#endif /*POWER_DOMAINS_NUMBER == 2U*/
{
/* 165 < HCLK <= 220 => 3WS (4 CPU cycles) */
latency = LL_FLASH_LATENCY_3;
}
else if((HCLK_Frequency > UTILS_SCALE2_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY2_FREQ))
{
/* 110 < HCLK <= 165 => 2WS (3 CPU cycles) */
latency = LL_FLASH_LATENCY_2;
}
else if((HCLK_Frequency > UTILS_SCALE2_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY1_FREQ))
{
/* 55 < HCLK <= 110 => 1WS (2 CPU cycles) */
latency = LL_FLASH_LATENCY_1;
}
else if(HCLK_Frequency <= UTILS_SCALE2_LATENCY0_FREQ)
{
/* HCLK <= 55 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */
}
else
{
status = ERROR;
}
}
else /* Scale 3 */
{
#if (POWER_DOMAINS_NUMBER == 3U)
if((HCLK_Frequency > UTILS_SCALE3_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY4_FREQ))
{
/* 180 < HCLK <= 225 => 4WS (5 CPU cycles) */
latency = LL_FLASH_LATENCY_4;
}
else if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY3_FREQ))
#else
if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY3_FREQ))
#endif /*POWER_DOMAINS_NUMBER == 3U*/
{
/* 135 < HCLK <= 180 => 3WS (4 CPU cycles) */
latency = LL_FLASH_LATENCY_3;
}
else if((HCLK_Frequency > UTILS_SCALE3_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY2_FREQ))
{
/* 90 < HCLK <= 135 => 2WS (3 CPU cycles) */
latency = LL_FLASH_LATENCY_2;
}
else if((HCLK_Frequency > UTILS_SCALE3_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY1_FREQ))
{
/* 45 < HCLK <= 90 => 1WS (2 CPU cycles) */
latency = LL_FLASH_LATENCY_1;
}
else if(HCLK_Frequency <= UTILS_SCALE3_LATENCY0_FREQ)
{
/* HCLK <= 45 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */
}
else
{
status = ERROR;
}
}
if(status == SUCCESS)
{
LL_FLASH_SetLatency(latency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
timeout = 2;
do
{
/* Wait for Flash latency to be updated */
getlatency = LL_FLASH_GetLatency();
timeout--;
} while ((getlatency != latency) && (timeout > 0U));
if(getlatency != latency)
{
status = ERROR;
}
}
}
return status;
}
/**
* @}
*/
/** @addtogroup UTILS_LL_Private_Functions
* @{
*/
/**
* @brief Function to check that PLL can be modified
* @param PLL_InputFrequency PLL input frequency (in Hz)
* @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains
* the configuration information for the PLL.
* @retval PLL output frequency (in Hz)
*/
static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct)
{
uint32_t pllfreq;
/* Check the parameters */
assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM));
assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN));
assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP));
assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN));
pllfreq = LL_RCC_CalcPLLClockFreq(PLL_InputFrequency, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, UTILS_PLLInitStruct->PLLP);
return pllfreq;
}
/**
* @brief Check that all PLLs are ready therefore configuration can be done
* @retval An ErrorStatus enumeration value:
* - SUCCESS: All PLLs are ready so configuration can be done
* - ERROR: One PLL at least is busy
*/
static ErrorStatus UTILS_IsPLLsReady(void)
{
ErrorStatus status = SUCCESS;
/* Check if one of the PLL1 is busy */
if(LL_RCC_PLL1_IsReady() != 0U)
{
/* PLL1 configuration cannot be done */
status = ERROR;
}
/* Check if one of the PLL2 is busy */
if(LL_RCC_PLL2_IsReady() != 0U)
{
/* PLL2 configuration cannot be done */
status = ERROR;
}
/* Check if one of the PLL3 is busy */
if(LL_RCC_PLL3_IsReady() != 0U)
{
/* PLL3 configuration cannot be done */
status = ERROR;
}
return status;
}
/**
* @brief Function to enable PLL and switch system clock to PLL
* @param SYSCLK_Frequency SYSCLK frequency
* @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains
* the configuration information for the BUS prescalers.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: No problem to switch system to PLL
* - ERROR: Problem to switch system to PLL
*/
static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct)
{
ErrorStatus status = SUCCESS;
uint32_t new_hclk_frequency;
assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->SYSCLKDivider));
assert_param(IS_LL_UTILS_AHB_DIV(UTILS_ClkInitStruct->AHBCLKDivider));
assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider));
assert_param(IS_LL_UTILS_APB2_DIV(UTILS_ClkInitStruct->APB2CLKDivider));
assert_param(IS_LL_UTILS_APB3_DIV(UTILS_ClkInitStruct->APB3CLKDivider));
assert_param(IS_LL_UTILS_APB4_DIV(UTILS_ClkInitStruct->APB4CLKDivider));
/* Calculate the new HCLK frequency */
new_hclk_frequency = LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider);
/* Increasing the number of wait states because of higher CPU frequency */
if (SystemD2Clock < new_hclk_frequency)
{
/* Set FLASH latency to highest latency */
status = LL_SetFlashLatency(new_hclk_frequency);
}
/* Update system clock configuration */
if(status == SUCCESS)
{
/* Enable PLL */
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U)
{
/* Wait for PLL ready */
}
/* Set All APBxPrescaler to the Highest Divider */
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_16);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_16);
LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_DIV_16);
LL_RCC_SetAPB4Prescaler(LL_RCC_APB4_DIV_16);
/* Set SYS prescaler*/
LL_RCC_SetSysPrescaler(UTILS_ClkInitStruct->SYSCLKDivider);
/* Set AHB prescaler*/
LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider);
/* Sysclk activation on the main PLL */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1)
{
/* Wait for system clock switch to PLL */
}
/* Set APBn prescaler*/
LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider);
LL_RCC_SetAPB2Prescaler(UTILS_ClkInitStruct->APB2CLKDivider);
LL_RCC_SetAPB3Prescaler(UTILS_ClkInitStruct->APB3CLKDivider);
LL_RCC_SetAPB4Prescaler(UTILS_ClkInitStruct->APB4CLKDivider);
/* Decreasing the number of wait states because of lower CPU frequency */
if (SystemD2Clock > new_hclk_frequency)
{
/* Set FLASH latency to lowest latency */
status = LL_SetFlashLatency(new_hclk_frequency);
}
/* Update the SystemD2Clock global variable */
#if defined(RCC_D1CFGR_HPRE)
SystemD2Clock = (SYSCLK_Frequency >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#else
SystemD2Clock = (SYSCLK_Frequency >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
#endif
/* Update SystemCoreClock variable */
#if defined(DUAL_CORE) && defined(CORE_CM4)
LL_SetSystemCoreClock(SystemD2Clock);
#else
LL_SetSystemCoreClock(SYSCLK_Frequency);
#endif /* DUAL_CORE && CORE_CM4 */
}
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/