openblt/Target/Demo/ARMCM3_LM3S_EK_LM3S8962_GCC/Prog/boot.c

371 lines
15 KiB
C

/************************************************************************************//**
* \file Demo\ARMCM3_LM3S_EK_LM3S8962_GCC\Prog\boot.c
* \brief Demo program bootloader interface source file.
* \ingroup Prog_ARMCM3_LM3S_EK_LM3S8962_GCC
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2012 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "header.h" /* generic header */
/****************************************************************************************
* Function prototypes
****************************************************************************************/
#if (BOOT_COM_UART_ENABLE > 0)
static void BootComUartInit(void);
static void BootComUartCheckActivationRequest(void);
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
static void BootComCanInit(void);
static void BootComCanCheckActivationRequest(void);
#endif
/************************************************************************************//**
** \brief Initializes the communication interface.
** \return none.
**
****************************************************************************************/
void BootComInit(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartInit();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanInit();
#endif
} /*** end of BootComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
void BootComCheckActivationRequest(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartCheckActivationRequest();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanCheckActivationRequest();
#endif
} /*** end of BootComCheckActivationRequest ***/
/************************************************************************************//**
** \brief Bootloader activation function.
** \return none.
**
****************************************************************************************/
void BootActivate(void)
{
/* perform software reset to activate the bootoader again */
SysCtlReset();
} /*** end of BootActivate ***/
#if (BOOT_COM_UART_ENABLE > 0)
/****************************************************************************************
* U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Timeout time for the reception of a CTO packet. The timer is started upon
* reception of the first packet byte.
*/
#define UART_CTO_RX_PACKET_TIMEOUT_MS (100u)
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data);
/************************************************************************************//**
** \brief Initializes the UART communication interface.
** \return none.
**
****************************************************************************************/
static void BootComUartInit(void)
{
/* enable the UART0 peripheral */
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
/* enable the and configure UART0 related peripherals and pins */
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/* configure the UART0 baudrate and communication parameters */
UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), BOOT_COM_UART_BAUDRATE,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));
} /*** end of BootUartComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComUartCheckActivationRequest(void)
{
static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1];
static unsigned char xcpCtoRxLength;
static unsigned char xcpCtoRxInProgress = 0;
static unsigned long xcpCtoRxStartTime = 0;
/* start of cto packet received? */
if (xcpCtoRxInProgress == 0)
{
/* store the message length when received */
if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1)
{
/* check that the length has a valid value. it should not be 0 */
if (xcpCtoReqPacket[0] > 0)
{
/* store the start time */
xcpCtoRxStartTime = TimeGet();
/* indicate that a cto packet is being received */
xcpCtoRxInProgress = 1;
/* reset packet data count */
xcpCtoRxLength = 0;
}
}
}
else
{
/* store the next packet byte */
if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1)
{
/* increment the packet data count */
xcpCtoRxLength++;
/* check to see if the entire packet was received */
if (xcpCtoRxLength == xcpCtoReqPacket[0])
{
/* done with cto packet reception */
xcpCtoRxInProgress = 0;
/* check if this was an XCP CONNECT command */
if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
}
else
{
/* check packet reception timeout */
if (TimeGet() > (xcpCtoRxStartTime + UART_CTO_RX_PACKET_TIMEOUT_MS))
{
/* cancel cto packet reception due to timeout. note that this automatically
* discards the already received packet bytes, allowing the host to retry.
*/
xcpCtoRxInProgress = 0;
}
}
}
} /*** end of BootComUartCheckActivationRequest ***/
/************************************************************************************//**
** \brief Receives a communication interface byte if one is present.
** \param data Pointer to byte where the data is to be stored.
** \return 1 if a byte was received, 0 otherwise.
**
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data)
{
signed long result;
/* try to read a newly received byte */
result = UARTCharGetNonBlocking(UART0_BASE);
/* check if a new byte was received */
if(result != -1)
{
/* store the received byte */
*data = (unsigned char)result;
/* inform caller of the newly received byte */
return 1;
}
/* inform caller that no new data was received */
return 0;
} /*** end of UartReceiveByte ***/
#endif /* BOOT_COM_UART_ENABLE > 0 */
#if (BOOT_COM_CAN_ENABLE > 0)
/****************************************************************************************
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Index of the used reception message object. */
#define CAN_RX_MSGOBJECT_IDX (0)
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief Lookup table to quickly and efficiently convert a bit number to a bit mask. */
static const unsigned short canBitNum2Mask[] =
{
0x0001, /* bit 0 */
};
/************************************************************************************//**
** \brief Attempts to match the bittiming parameters to the requested baudrate
** for a sample point between 65 and 75%, through a linear search
** algorithm. It is based on the equation:
** baudrate = CAN Clock Freq/((1+PropSeg+Phase1Seg+Phase2Seg)*Prescaler)
** \return 1 if a valid bittiming configuration was found and set. 0 otherwise.
**
****************************************************************************************/
static unsigned char CanSetBittiming(void)
{
tCANBitClkParms bitClkParms;
unsigned char samplepoint;
/* init SJW to maximum value */
bitClkParms.uSJW = 4;
/* use a double loop to iterate through all possible settings of uSyncPropPhase1Seg
* and uPhase2Seg.
*/
for (bitClkParms.uSyncPropPhase1Seg = 16; bitClkParms.uSyncPropPhase1Seg >= 1; bitClkParms.uSyncPropPhase1Seg--)
{
for (bitClkParms.uPhase2Seg = 8; bitClkParms.uPhase2Seg >= 1; bitClkParms.uPhase2Seg--)
{
samplepoint = ((1+bitClkParms.uSyncPropPhase1Seg) * 100) / (1+bitClkParms.uSyncPropPhase1Seg+bitClkParms.uPhase2Seg);
/* check that sample points is within the preferred range */
if ( (samplepoint >= 65) && (samplepoint <= 75) )
{
/* does a prescaler exist to get the exact baudrate with these bittiming
* settings?
*/
if ((((BOOT_CPU_XTAL_SPEED_KHZ*1000)/BOOT_COM_CAN_BAUDRATE) % (1+bitClkParms.uSyncPropPhase1Seg+bitClkParms.uPhase2Seg)) == 0)
{
/* bittiming configuration found. now update SJW to that it is never greater
* than one of the phase segments. Giving the fact that the sample point is
* rather high, only phase seg 2 need to be considered for this.
*/
if (bitClkParms.uPhase2Seg < 4)
{
bitClkParms.uSJW = bitClkParms.uPhase2Seg;
}
/* calculate the actual prescaler value */
bitClkParms.uQuantumPrescaler = ((BOOT_CPU_XTAL_SPEED_KHZ*1000)/BOOT_COM_CAN_BAUDRATE)/(1+bitClkParms.uSyncPropPhase1Seg+bitClkParms.uPhase2Seg);
/* apply this bittiming configuration */
CANSetBitTiming(CAN0_BASE, &bitClkParms);
/* break loop and return from function */
return 1;
}
}
}
}
/* no valid bittiming configuration found */
return 0;
} /*** end of CanSetBittiming ***/
/************************************************************************************//**
** \brief Initializes the CAN communication interface.
** \return none.
**
****************************************************************************************/
static void BootComCanInit(void)
{
tCANMsgObject rxMsgObject;
/* configure the CAN pins */
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
GPIOPinTypeCAN(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/* enable the CAN controller */
SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);
/* reset the state of the CAN controller, including the message objects */
CANInit(CAN0_BASE);
/* set the bittiming */
CanSetBittiming();
/* take the CAN controller out of the initialization state */
CANEnable(CAN0_BASE);
/* setup message object 1 to receive the BOOT_COM_CAN_RX_MSG_ID message*/
rxMsgObject.ulMsgID = BOOT_COM_CAN_RX_MSG_ID;
rxMsgObject.ulMsgIDMask = 0x7ff;
rxMsgObject.ulFlags = MSG_OBJ_USE_ID_FILTER;
rxMsgObject.ulMsgLen = 8;
/* is it a 29-bit extended CAN identifier? */
if ((BOOT_COM_CAN_RX_MSG_ID & 0x80000000) != 0)
{
/* configure reception acceptance filter for 29-bit CAN identifier. */
rxMsgObject.ulMsgID &= ~0x80000000;
rxMsgObject.ulMsgIDMask = 0x1fffffff;
rxMsgObject.ulFlags |= MSG_OBJ_EXTENDED_ID;
}
CANMessageSet(CAN0_BASE, CAN_RX_MSGOBJECT_IDX+1, &rxMsgObject, MSG_OBJ_TYPE_RX);
} /*** end of BootCanComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComCanCheckActivationRequest(void)
{
unsigned long status;
tCANMsgObject msgObject;
unsigned char msgData[8];
/* get bitmask of message objects with new data */
status = CANStatusGet(CAN0_BASE, CAN_STS_NEWDAT);
/* check if the BOOT_COM_CAN_RX_MSG_ID message was received */
if ((status & canBitNum2Mask[CAN_RX_MSGOBJECT_IDX]) != 0)
{
/* read the message data */
msgObject.pucMsgData = msgData;
CANMessageGet(CAN0_BASE, CAN_RX_MSGOBJECT_IDX+1, &msgObject, true);
/* check if this was an XCP CONNECT command */
if ((msgData[0] == 0xff) && (msgData[1] == 0x00))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
} /*** end of BootComCanCheckActivationRequest ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of boot.c *************************************/