openblt/Target/Demo/ARMCM3_EFM32_Olimex_EM32G88.../Boot/lib/efm32lib/src/efm32_cmu.c

2142 lines
61 KiB
C

/***************************************************************************//**
* @file
* @brief Clock management unit (CMU) Peripheral API for EFM32.
* @author Energy Micro AS
* @version 2.3.2
*******************************************************************************
* @section License
* <b>(C) Copyright 2011 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* This source code is the property of Energy Micro AS. The source and compiled
* code may only be used on Energy Micro "EFM32" microcontrollers.
*
* This copyright notice may not be removed from the source code nor changed.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "efm32.h"
#include "efm32_cmu.h"
#include "efm32_assert.h"
#include "efm32_bitband.h"
#include "efm32_emu.h"
/***************************************************************************//**
* @addtogroup EFM32_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup CMU
* @brief Clock management unit (CMU) Peripheral API for EFM32
* @{
******************************************************************************/
/*******************************************************************************
****************************** DEFINES ************************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** Maximum allowed core frequency when using 0 wait states on flash access. */
#define CMU_MAX_FREQ_0WS 16000000
/** Maximum allowed core frequency when using 1 wait states on flash access */
#define CMU_MAX_FREQ_1WS 32000000
/** Low frequency A group identifier */
#define CMU_LFA 0
/** Low frequency B group identifier */
#define CMU_LFB 1
/** @endcond */
/*******************************************************************************
************************** LOCAL FUNCTIONS ********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/***************************************************************************//**
* @brief
* Configure flash access wait states to most conservative setting for
* this target. Retain SCBTP setting.
******************************************************************************/
static void CMU_FlashWaitStateMax(void)
{
uint32_t cfg;
cfg = MSC->READCTRL;
switch(cfg & _MSC_READCTRL_MODE_MASK)
{
case MSC_READCTRL_MODE_WS1:
case MSC_READCTRL_MODE_WS0:
#if defined(_EFM32_GIANT_FAMILY)
case MSC_READCTRL_MODE_WS2:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS2;
#else
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS1;
#endif
break;
case MSC_READCTRL_MODE_WS1SCBTP:
case MSC_READCTRL_MODE_WS0SCBTP:
#if defined(_EFM32_GIANT_FAMILY)
case MSC_READCTRL_MODE_WS2SCBTP:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS2SCBTP;
#else
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS1SCBTP;
#endif
break;
}
MSC->READCTRL = cfg;
}
/***************************************************************************//**
* @brief Convert dividend to prescaler logarithmic value. Only works for even
* numbers equal to 2^n
* @param[in] div Unscaled dividend,
* @return Logarithm of 2, as used by fixed prescalers
******************************************************************************/
static uint32_t CMU_DivToLog2(CMU_ClkDiv_TypeDef div)
{
uint32_t log2;
/* Prescalers take argument of 32768 or less */
EFM_ASSERT((div>0) && (div <= 32768));
/* Count leading zeroes and "reverse" result, Cortex-M3 intrinsic */
log2 = (31 - __CLZ(div));
return log2;
}
/***************************************************************************//**
* @brief Convert logarithm of 2 prescaler to division factor
* @param[in] log2
* @return Dividend
******************************************************************************/
static uint32_t CMU_Log2ToDiv(uint32_t log2)
{
return 1<<log2;
}
/***************************************************************************//**
* @brief
* Configure flash access wait states in order to support given HFCORECLK
* frequency.
*
* @param[in] hfcoreclk
* HFCORECLK frequency that flash access wait states must be configured for.
******************************************************************************/
static void CMU_FlashWaitStateControl(uint32_t hfcoreclk)
{
uint32_t cfg;
cfg = MSC->READCTRL;
#if defined(_EFM32_GIANT_FAMILY)
if (hfcoreclk > CMU_MAX_FREQ_1WS)
{
switch(cfg & _MSC_READCTRL_MODE_MASK)
{
case MSC_READCTRL_MODE_WS0SCBTP:
case MSC_READCTRL_MODE_WS1SCBTP:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS2SCBTP;
break;
case MSC_READCTRL_MODE_WS0:
case MSC_READCTRL_MODE_WS1:
default:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS2;
break;
}
}
#endif
if ((hfcoreclk > CMU_MAX_FREQ_0WS) && (hfcoreclk <= CMU_MAX_FREQ_1WS))
{
switch (cfg & _MSC_READCTRL_MODE_MASK)
{
#if defined(_EFM32_GIANT_FAMILY)
case MSC_READCTRL_MODE_WS2SCBTP:
#endif
case MSC_READCTRL_MODE_WS0SCBTP:
case MSC_READCTRL_MODE_WS1SCBTP:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS1SCBTP;
break;
default:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS1;
break;
}
}
if (hfcoreclk <= CMU_MAX_FREQ_0WS)
{
switch (cfg & _MSC_READCTRL_MODE_MASK)
{
#if defined(_EFM32_GIANT_FAMILY)
case MSC_READCTRL_MODE_WS2SCBTP:
#endif
case MSC_READCTRL_MODE_WS1SCBTP:
case MSC_READCTRL_MODE_WS0SCBTP:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS0SCBTP;
break;
default:
cfg = (cfg & ~_MSC_READCTRL_MODE_MASK) | MSC_READCTRL_MODE_WS0;
break;
}
}
MSC->READCTRL = cfg;
}
#if defined(USB_PRESENT)
/***************************************************************************//**
* @brief
* Get the USBC frequency
*
* @return
* USBC frequency in Hz
******************************************************************************/
static uint32_t CMU_USBCClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_USBC);
switch(clk)
{
case cmuSelect_LFXO:
ret = SystemLFXOClockGet();
break;
case cmuSelect_LFRCO:
ret = SystemLFRCOClockGet();
break;
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
break;
default:
/* Clock is not enabled */
ret = 0;
break;
}
return ret;
}
#endif
/***************************************************************************//**
* @brief
* Get the AUX clock frequency. Used by MSC flash programming and LESENSE,
* by default also as debug clock.
*
* @return
* AUX Frequency in Hz
******************************************************************************/
static uint32_t CMU_AUXClkGet(void)
{
uint32_t ret;
#if defined (_EFM32_GECKO_FAMILY)
/* Gecko has a fixed 14Mhz AUXHFRCO clock */
ret = 14000000;
#else
switch(CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_BAND_MASK)
{
case CMU_AUXHFRCOCTRL_BAND_1MHZ:
ret = 1000000;
break;
case CMU_AUXHFRCOCTRL_BAND_7MHZ:
ret = 7000000;
break;
case CMU_AUXHFRCOCTRL_BAND_11MHZ:
ret = 11000000;
break;
case CMU_AUXHFRCOCTRL_BAND_14MHZ:
ret = 14000000;
break;
case CMU_AUXHFRCOCTRL_BAND_21MHZ:
ret = 21000000;
break;
case CMU_AUXHFRCOCTRL_BAND_28MHZ:
ret = 28000000;
break;
default:
ret = 0;
break;
}
#endif
return ret;
}
/***************************************************************************//**
* @brief
* Get the Debug Trace clock frequency
*
* @return
* Debug Trace frequency in Hz
******************************************************************************/
static uint32_t CMU_DBGClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_DBG);
switch(clk)
{
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
#if defined(_EFM32_GIANT_FAMILY)
/* Giant Gecko has an additional divider, not used by USBC */
ret = ret / (1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK) >>
_CMU_CTRL_HFCLKDIV_SHIFT));
#endif
break;
case cmuSelect_AUXHFRCO:
ret = CMU_AUXClkGet();
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Get the LFnCLK frequency based on current configuration.
*
* @param[in] lfClkBranch
* LF branch, 0 = LFA, 1 = LFB, ...
*
* @return
* The LFnCLK frequency in Hz. If no LFnCLK is selected (disabled), 0 is
* returned.
******************************************************************************/
static uint32_t CMU_LFClkGet(unsigned int lfClkBranch)
{
uint32_t ret;
EFM_ASSERT(lfClkBranch == CMU_LFA || lfClkBranch == CMU_LFB);
switch ((CMU->LFCLKSEL >> (lfClkBranch * 2)) & 0x3)
{
case _CMU_LFCLKSEL_LFA_LFRCO:
ret = SystemLFRCOClockGet();
break;
case _CMU_LFCLKSEL_LFA_LFXO:
ret = SystemLFXOClockGet();
break;
case _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
#if defined (_EFM32_GIANT_FAMILY)
/* Giant Gecko can use a /4 divider (and must if >32MHz) or HFLE is set */
if(((CMU->HFCORECLKDIV & _CMU_HFCORECLKDIV_HFCORECLKLEDIV_MASK) == CMU_HFCORECLKDIV_HFCORECLKLEDIV_DIV4)||
(CMU->CTRL & CMU_CTRL_HFLE))
{
ret = SystemCoreClockGet() / 4;
}
else
{
ret = SystemCoreClockGet() / 2;
}
#else
ret = SystemCoreClockGet() / 2;
#endif
break;
case _CMU_LFCLKSEL_LFA_DISABLED:
#if defined (_EFM32_GIANT_FAMILY)
/* Check LF Extended bit setting for ULFRCO clock */
if(CMU->LFCLKSEL >> (_CMU_LFCLKSEL_LFAE_SHIFT + lfClkBranch * 4))
{
ret = SystemULFRCOClockGet();
}
else
{
ret = 0;
}
#else
ret = 0;
#endif
break;
default:
ret = 0;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Wait for ongoing sync of register(s) to low frequency domain to complete.
*
* @param[in] mask
* Bitmask corresponding to SYNCBUSY register defined bits, indicating
* registers that must complete any ongoing synchronization.
******************************************************************************/
static __INLINE void CMU_Sync(uint32_t mask)
{
/* Avoid deadlock if modifying the same register twice when freeze mode is */
/* activated. */
if (CMU->FREEZE & CMU_FREEZE_REGFREEZE)
return;
/* Wait for any pending previous write operation to have been completed */
/* in low frequency domain */
while (CMU->SYNCBUSY & mask)
;
}
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Calibrate clock.
*
* @details
* Run a calibration for HFCLK against a selectable reference clock. Please
* refer to the EFM32 reference manual, CMU chapter, for further details.
*
* @note
* This function will not return until calibration measurement is completed.
*
* @param[in] HFCycles
* The number of HFCLK cycles to run calibration. Increasing this number
* increases precision, but the calibration will take more time.
*
* @param[in] ref
* The reference clock used to compare HFCLK with.
*
* @return
* The number of ticks the reference clock after HFCycles ticks on the HF
* clock.
******************************************************************************/
uint32_t CMU_Calibrate(uint32_t HFCycles, CMU_Osc_TypeDef ref)
{
EFM_ASSERT(HFCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set reference clock source */
switch (ref)
{
case cmuOsc_LFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
return 0;
}
/* Set top value */
CMU->CALCNT = HFCycles;
/* Start calibration */
CMU->CMD = CMU_CMD_CALSTART;
/* Wait until calibration completes */
while (CMU->STATUS & CMU_STATUS_CALBSY)
;
return CMU->CALCNT;
}
#if defined (_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
/***************************************************************************//**
* @brief
* Configure clock calibration
*
* @details
* Configure a calibration for a selectable clock source against another
* selectable reference clock.
* Refer to the EFM32 reference manual, CMU chapter, for further details.
*
* @note
* After configuration, a call to CMU_CalibrateStart() is required, and
* the resulting calibration value can be read out with the
* CMU_CalibrateCountGet() function call.
*
* @param[in] downCycles
* The number of downSel clock cycles to run calibration. Increasing this
* number increases precision, but the calibration will take more time.
*
* @param[in] downSel
* The clock which will be counted down downCycles
*
* @param[in] upSel
* The reference clock, the number of cycles generated by this clock will
* be counted and added up, the result can be given with the
* CMU_CalibrateCountGet() function call.
******************************************************************************/
void CMU_CalibrateConfig(uint32_t downCycles, CMU_Osc_TypeDef downSel,
CMU_Osc_TypeDef upSel)
{
/* Keep untouched configuration settings */
uint32_t calCtrl = CMU->CALCTRL & ~(_CMU_CALCTRL_UPSEL_MASK | _CMU_CALCTRL_DOWNSEL_MASK);
/* 20 bits of precision to calibration count register */
EFM_ASSERT(downCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set down counting clock source - down counter */
switch (downSel)
{
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
}
/* Set top value to be counted down by the downSel clock */
CMU->CALCNT = downCycles;
/* Set reference clock source - up counter */
switch (upSel)
{
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
default:
EFM_ASSERT(0);
}
CMU->CALCTRL = calCtrl;
}
#endif
/***************************************************************************//**
* @brief
* Get clock divisor/prescaler.
*
* @param[in] clock
* Clock point to get divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler. Please refer to CMU overview in reference manual.
*
* @return
* The current clock point divisor/prescaler. 1 is returned
* if @p clock specifies a clock point without a divisor/prescaler.
******************************************************************************/
CMU_ClkDiv_TypeDef CMU_ClockDivGet(CMU_Clock_TypeDef clock)
{
uint32_t divReg;
CMU_ClkDiv_TypeDef ret;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg)
{
#if defined(_EFM32_GIANT_FAMILY)
case CMU_HFCLKDIV_REG:
ret = 1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK) >>
_CMU_CTRL_HFCLKDIV_SHIFT);
break;
#endif
case CMU_HFPERCLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFPERCLKDIV &
_CMU_HFPERCLKDIV_HFPERCLKDIV_MASK) >>
_CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_HFCORECLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFCORECLKDIV &
_CMU_HFCORECLKDIV_HFCORECLKDIV_MASK) >>
_CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
case cmuClock_RTC:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK) >>
_CMU_LFAPRESC0_RTC_SHIFT));
ret = CMU_Log2ToDiv(ret);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK) >>
_CMU_LFAPRESC0_LETIMER0_SHIFT));
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFPRESC0_LCD_MASK)
case cmuClock_LCDpre:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK) >>
_CMU_LFAPRESC0_LCD_SHIFT) + cmuClkDiv_16);
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFAPRESC0_LESENSE_MASK)
case cmuClock_LESENSE:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK) >>
_CMU_LFAPRESC0_LESENSE_SHIFT));
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined(_CMU_LFPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK) >>
_CMU_LFBPRESC0_LEUART0_SHIFT));
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK) >>
_CMU_LFBPRESC0_LEUART1_SHIFT));
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
return(ret);
}
/***************************************************************************//**
* @brief
* Set clock divisor/prescaler.
*
* @note
* If setting a LF clock prescaler, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* Clock point to set divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler, please refer to CMU overview in the reference
* manual.
*
* @param[in] div
* The clock divisor to use (<= cmuClkDiv_512).
******************************************************************************/
void CMU_ClockDivSet(CMU_Clock_TypeDef clock, CMU_ClkDiv_TypeDef div)
{
uint32_t freq;
uint32_t divReg;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg)
{
#if defined (_EFM32_GIANT_FAMILY)
case CMU_HFCLKDIV_REG:
EFM_ASSERT((div>=1) && (div<=8));
/* Configure worst case wait states for flash access before setting divisor */
CMU_FlashWaitStateMax();
/* Set divider */
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFCLKDIV_MASK) |
((div-1) << _CMU_CTRL_HFCLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
CMU_FlashWaitStateControl(freq);
break;
#endif
case CMU_HFPERCLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_512));
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFPERCLKDIV = (CMU->HFPERCLKDIV & ~_CMU_HFPERCLKDIV_HFPERCLKDIV_MASK) |
(div << _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
break;
case CMU_HFCORECLKDIV_REG:
EFM_ASSERT(div <= cmuClkDiv_512);
/* Configure worst case wait states for flash access before setting divisor */
CMU_FlashWaitStateMax();
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFCORECLKDIV = (CMU->HFCORECLKDIV & ~_CMU_HFCORECLKDIV_HFCORECLKDIV_MASK) |
(div << _CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
CMU_FlashWaitStateControl(freq);
break;
case CMU_LFAPRESC0_REG:
switch (clock)
{
case cmuClock_RTC:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTC_MASK) |
(div << _CMU_LFAPRESC0_RTC_SHIFT);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LETIMER0_MASK) |
(div << _CMU_LFAPRESC0_LETIMER0_SHIFT);
break;
#endif
#if defined(LCD_PRESENT)
case cmuClock_LCDpre:
EFM_ASSERT((div >= cmuClkDiv_16) && (div <= cmuClkDiv_128));
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LCD_MASK) |
((div - cmuClkDiv_16) << _CMU_LFAPRESC0_LCD_SHIFT);
break;
#endif /* defined(LCD_PRESENT) */
#if defined(LESENSE_PRESENT)
case cmuClock_LESENSE:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LESENSE_MASK) |
(div << _CMU_LFAPRESC0_LESENSE_SHIFT);
break;
#endif /* defined(LESENSE_PRESENT) */
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock)
{
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART0_MASK) |
(((uint32_t)div) << _CMU_LFBPRESC0_LEUART0_SHIFT);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
CMU_Sync(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART1_MASK) |
(((uint32_t)div) << _CMU_LFBPRESC0_LEUART1_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
default:
EFM_ASSERT(0);
break;
}
}
/***************************************************************************//**
* @brief
* Enable/disable a clock.
*
* @details
* In general, module clocking is disabled after a reset. If a module
* clock is disabled, the registers of that module are not accessible and
* reading from such registers may return undefined values. Writing to
* registers of clock disabled modules have no effect. One should normally
* avoid accessing module registers of a module with a disabled clock.
*
* @note
* If enabling/disabling a LF clock, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* The clock to enable/disable. Notice that not all defined clock
* points have separate enable/disable control, please refer to CMU overview
* in reference manual.
*
* @param[in] enable
* @li true - enable specified clock.
* @li false - disable specified clock.
******************************************************************************/
void CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable)
{
volatile uint32_t *reg;
uint32_t bit;
uint32_t sync = 0;
/* Identify enable register */
switch ((clock >> CMU_EN_REG_POS) & CMU_EN_REG_MASK)
{
case CMU_HFPERCLKDIV_EN_REG:
reg = &(CMU->HFPERCLKDIV);
break;
case CMU_HFPERCLKEN0_EN_REG:
reg = &(CMU->HFPERCLKEN0);
break;
case CMU_HFCORECLKEN0_EN_REG:
reg = &(CMU->HFCORECLKEN0);
break;
case CMU_LFACLKEN0_EN_REG:
reg = &(CMU->LFACLKEN0);
sync = CMU_SYNCBUSY_LFACLKEN0;
break;
case CMU_LFBCLKEN0_EN_REG:
reg = &(CMU->LFBCLKEN0);
sync = CMU_SYNCBUSY_LFBCLKEN0;
break;
case CMU_PCNT_EN_REG:
reg = &(CMU->PCNTCTRL);
break;
default: /* Cannot enable/disable clock point */
EFM_ASSERT(0);
return;
}
/* Get bit position used to enable/disable */
bit = (clock >> CMU_EN_BIT_POS) & CMU_EN_BIT_MASK;
/* LF synchronization required? */
if (sync)
{
CMU_Sync(sync);
}
/* Set/clear bit as requested */
BITBAND_Peripheral(reg, bit, (unsigned int)enable);
}
/***************************************************************************//**
* @brief
* Get clock frequency for a clock point.
*
* @param[in] clock
* Clock point to fetch frequency for.
*
* @return
* The current frequency in Hz.
******************************************************************************/
uint32_t CMU_ClockFreqGet(CMU_Clock_TypeDef clock)
{
uint32_t ret;
switch(clock & (CMU_CLK_BRANCH_MASK << CMU_CLK_BRANCH_POS))
{
case (CMU_HF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = SystemHFClockGet();
#if defined(_EFM32_GIANT_FAMILY)
/* Giant Gecko has an additional divider, not used by USBC */
ret = ret / (1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK) >>
_CMU_CTRL_HFCLKDIV_SHIFT));
#endif
} break;
#if defined(_CMU_HFPERCLKEN0_USART0_MASK) || \
defined(_CMU_HFPERCLKEN0_USART1_MASK) || \
defined(_CMU_HFPERCLKEN0_USART2_MASK) || \
defined(_CMU_HFPERCLKEN0_UART0_MASK) || \
defined(_CMU_HFPERCLKEN0_UART1_MASK) || \
defined(_CMU_HFPERCLKEN0_TIMER0_MASK) || \
defined(_CMU_HFPERCLKEN0_TIMER1_MASK) || \
defined(_CMU_HFPERCLKEN0_TIMER2_MASK) || \
defined(_CMU_HFPERCLKEN0_TIMER3_MASK) || \
defined(_CMU_HFPERCLKEN0_ACMP0_MASK) || \
defined(_CMU_HFPERCLKEN0_ACMP1_MASK) || \
defined(_CMU_HFPERCLKEN0_DAC0_MASK) || \
defined(_CMU_HFPERCLKEN0_ADC0_MASK) || \
defined(_CMU_HFPERCLKEN0_I2C0_MASK) || \
defined(_CMU_HFPERCLKEN0_I2C1_MASK) || \
defined(_CMU_HFPERCLKEN0_USB_MASK) || \
defined(PRS_PRESENT) || \
defined(VCMP_PRESENT)|| \
defined(GPIO_PRESENT)
case (CMU_HFPER_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = SystemHFClockGet();
#if defined (_EFM32_GIANT_FAMILY)
/* Leopard/Giant Gecko has an additional divider */
ret = ret / (1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK) >>
_CMU_CTRL_HFCLKDIV_SHIFT));
#endif
ret >>= (CMU->HFPERCLKDIV & _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK) >>
_CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT;
} break;
#endif
#if defined(AES_PRESENT) || \
defined(DMA_PRESENT) || \
defined(EBI_PRESENT) || \
defined(USB_PRESENT) || \
defined(USBC_PRESENT)
case (CMU_HFCORE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = SystemCoreClockGet();
} break;
#endif
case (CMU_LFA_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
} break;
#if defined(_CMU_LFACLKEN0_RTC_MASK)
case (CMU_RTC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK) >>
_CMU_LFAPRESC0_RTC_SHIFT;
} break;
#endif
#if defined(_CMU_LFACLKEN0_LETIMER0_MASK)
case (CMU_LETIMER_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK) >>
_CMU_LFAPRESC0_LETIMER0_SHIFT;
} break;
#endif
#if defined(_CMU_LFACLKEN0_LCD_MASK)
case (CMU_LCDPRE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK) >>
_CMU_LFAPRESC0_LCD_SHIFT;
} break;
case (CMU_LCD_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK) >>
_CMU_LFAPRESC0_LCD_SHIFT;
ret /= (1 + ((CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK) >>
_CMU_LCDCTRL_FDIV_SHIFT));
} break;
#endif
#if defined(_CMU_LFACLKEN0_LESENSE_MASK)
case (CMU_LESENSE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK) >>
_CMU_LFAPRESC0_LESENSE_SHIFT;
} break;
#endif
case (CMU_LFB_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFB);
} break;
#if defined(_CMU_LFBCLKEN0_LEUART0_MASK)
case (CMU_LEUART0_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFB);
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK) >>
_CMU_LFBPRESC0_LEUART0_SHIFT;
} break;
#endif
#if defined(_CMU_LFBCLKEN0_LEUART1_MASK)
case (CMU_LEUART1_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_LFClkGet(CMU_LFB);
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK) >>
_CMU_LFBPRESC0_LEUART1_SHIFT;
} break;
#endif
case (CMU_DBG_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_DBGClkGet();
} break;
case (CMU_AUX_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_AUXClkGet();
} break;
#if defined(USB_PRESENT)
case (CMU_USBC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = CMU_USBCClkGet();
} break;
#endif
default:
{
EFM_ASSERT(0);
ret = 0;
} break;
}
return ret;
}
/**************************************************************************//**
* @brief
* Get currently selected reference clock used for a clock branch.
*
* @param[in] clock
* Clock branch to fetch selected ref. clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB
* @li #cmuClock_USBC
* @li #cmuClock_DBG
*
* @return
* Reference clock used for clocking selected branch, #cmuSelect_Error if
* invalid @p clock provided.
*****************************************************************************/
CMU_Select_TypeDef CMU_ClockSelectGet(CMU_Clock_TypeDef clock)
{
CMU_Select_TypeDef ret = cmuSelect_Disabled;
uint32_t selReg;
selReg = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selReg)
{
case CMU_HFCLKSEL_REG:
switch (CMU->STATUS & (CMU_STATUS_HFRCOSEL | CMU_STATUS_HFXOSEL |
CMU_STATUS_LFRCOSEL | CMU_STATUS_LFXOSEL))
{
case CMU_STATUS_LFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_LFRCOSEL:
ret = cmuSelect_LFRCO;
break;
case CMU_STATUS_HFXOSEL:
ret = cmuSelect_HFXO;
break;
default:
ret = cmuSelect_HFRCO;
break;
}
break;
case CMU_LFACLKSEL_REG:
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFA_MASK)
{
case _CMU_LFCLKSEL_LFA_LFRCO:
ret = cmuSelect_LFRCO;
break;
case _CMU_LFCLKSEL_LFA_LFXO:
ret = cmuSelect_LFXO;
break;
case _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
ret = cmuSelect_CORELEDIV2;
break;
default:
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFAE_MASK)
{
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
break;
case CMU_LFBCLKSEL_REG:
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFB_MASK)
{
case _CMU_LFCLKSEL_LFB_LFRCO:
ret = cmuSelect_LFRCO;
break;
case _CMU_LFCLKSEL_LFB_LFXO:
ret = cmuSelect_LFXO;
break;
case _CMU_LFCLKSEL_LFB_HFCORECLKLEDIV2:
ret = cmuSelect_CORELEDIV2;
break;
default:
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFBE_MASK)
{
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
break;
case CMU_DBGCLKSEL_REG:
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
switch(CMU->CTRL & _CMU_CTRL_DBGCLK_MASK)
{
case CMU_CTRL_DBGCLK_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_CTRL_DBGCLK_HFCLK:
ret = cmuSelect_HFCLK;
break;
}
#endif
#if defined(_EFM32_GECKO_FAMILY)
ret = cmuSelect_AUXHFRCO;
#endif
break;
#if defined(USB_PRESENT)
case CMU_USBCCLKSEL_REG:
switch(CMU->STATUS & (CMU_STATUS_USBCHFCLKSEL |
CMU_STATUS_USBCLFXOSEL |
CMU_STATUS_USBCLFRCOSEL))
{
case CMU_STATUS_USBCHFCLKSEL:
ret = cmuSelect_HFCLK;
break;
case CMU_STATUS_USBCLFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_USBCLFRCOSEL:
ret = cmuSelect_LFRCO;
break;
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuSelect_Error;
break;
}
return ret;
}
/**************************************************************************//**
* @brief
* Select reference clock/oscillator used for a clock branch.
*
* @details
* Notice that if a selected reference is not enabled prior to selecting its
* use, it will be enabled, and this function will wait for the selected
* oscillator to be stable. It will however NOT be disabled if another
* reference clock is selected later.
*
* This feature is particularly important if selecting a new reference
* clock for the clock branch clocking the core, otherwise the system
* may halt.
*
* @param[in] clock
* Clock branch to select reference clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB
* @li #cmuClock_USBC
* @li #cmuClock_DBG
*
* @param[in] ref
* Reference selected for clocking, please refer to reference manual for
* for details on which reference is available for a specific clock branch.
*****************************************************************************/
void CMU_ClockSelectSet(CMU_Clock_TypeDef clock, CMU_Select_TypeDef ref)
{
uint32_t select = cmuOsc_HFRCO;
CMU_Osc_TypeDef osc = cmuOsc_HFRCO;
uint32_t freq;
uint32_t selReg;
uint32_t lfShift;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
uint32_t lfExtendedShift;
uint32_t lfExtended = 0;
#endif
uint32_t tmp;
selReg = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selReg)
{
case CMU_HFCLKSEL_REG:
switch (ref)
{
case cmuSelect_LFXO:
select = CMU_CMD_HFCLKSEL_LFXO;
osc = cmuOsc_LFXO;
break;
case cmuSelect_LFRCO:
select = CMU_CMD_HFCLKSEL_LFRCO;
osc = cmuOsc_LFRCO;
break;
case cmuSelect_HFXO:
select = CMU_CMD_HFCLKSEL_HFXO;
osc = cmuOsc_HFXO;
#if defined(_EFM32_GIANT_FAMILY)
/* Adjust HFXO buffer current for high frequencies, enable HFLE for */
/* frequencies above 32MHz */
if(SystemHFXOClockGet() > 32000000)
{
CMU->CTRL |= (_CMU_CTRL_HFXOBUFCUR_MASK|CMU_CTRL_HFLE);
}
#endif
break;
case cmuSelect_HFRCO:
select = CMU_CMD_HFCLKSEL_HFRCO;
osc = cmuOsc_HFRCO;
break;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
case cmuSelect_ULFRCO:
/* ULFRCO cannot be used as HFCLK */
EFM_ASSERT(0);
break;
#endif
default:
EFM_ASSERT(0);
return;
}
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(osc, true, true);
/* Configure worst case wait states for flash access before selecting */
CMU_FlashWaitStateMax();
/* Switch to selected oscillator */
CMU->CMD = select;
/* Keep EMU module informed */
EMU_UpdateOscConfig();
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for currently selected core clk */
CMU_FlashWaitStateControl(freq);
break;
case CMU_LFACLKSEL_REG:
case CMU_LFBCLKSEL_REG:
if (selReg == CMU_LFACLKSEL_REG)
{
lfShift = _CMU_LFCLKSEL_LFA_SHIFT;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
lfExtendedShift = _CMU_LFCLKSEL_LFAE_SHIFT;
#endif
}
else
{
lfShift = _CMU_LFCLKSEL_LFB_SHIFT;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
lfExtendedShift = _CMU_LFCLKSEL_LFBE_SHIFT;
#endif
}
switch (ref)
{
case cmuSelect_Disabled:
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFRCO;
break;
case cmuSelect_CORELEDIV2:
/* Ensure HFCORE to LE clocking is enabled */
BITBAND_Peripheral(&(CMU->HFCORECLKEN0), _CMU_HFCORECLKEN0_LE_SHIFT, 1);
tmp = _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2;
#if defined(_EFM32_GIANT_FAMILY)
/* If core frequency is > 32MHz on Giant/Leopard, enable HFLE and DIV4 */
freq = SystemCoreClockGet();
if(freq > CMU_MAX_FREQ_1WS)
{
/* Enable CMU HFLE */
BITBAND_Peripheral(&(CMU->CTRL), _CMU_CTRL_HFLE_SHIFT, 1);
/* Enable DIV4 factor for peripheral clock */
CMU->HFCORECLKDIV = (CMU->HFCORECLKDIV & ~(_CMU_HFCORECLKDIV_HFCORECLKLEDIV_MASK))|
CMU_HFCORECLKDIV_HFCORECLKLEDIV_DIV4;
}
#endif
break;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
case cmuSelect_ULFRCO:
/* ULFRCO is always enabled */
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
lfExtended = 1;
break;
#endif
default:
/* Illegal clock source for LFA/LFB selected */
EFM_ASSERT(0);
return;
}
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~((_CMU_LFCLKSEL_LFA_MASK | _CMU_LFCLKSEL_LFAE_MASK) << lfShift)) |
(tmp << lfShift) | (lfExtended << lfExtendedShift);
#else
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~(_CMU_LFCLKSEL_LFA_MASK << lfShift)) |
(tmp << lfShift);
#endif
break;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
case CMU_DBGCLKSEL_REG:
switch(ref)
{
case cmuSelect_AUXHFRCO:
/* Select AUXHFRCO as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))| CMU_CTRL_DBGCLK_AUXHFRCO;
break;
case cmuSelect_HFCLK:
/* Select divided HFCLK as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))| CMU_CTRL_DBGCLK_HFCLK;
break;
default:
/* Illegal clock source for debug selected */
EFM_ASSERT(0);
return;
}
break;
#endif
#if defined(USB_PRESENT)
case CMU_USBCCLKSEL_REG:
switch(ref)
{
case cmuSelect_HFCLK:
/* Select undivided HFCLK as clock source for USB */
/* Oscillator must already be enabled, if not the core had stopped */
CMU->CMD = CMU_CMD_USBCCLKSEL_HFCLK;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCHFCLKSEL)==0);
break;
case cmuSelect_LFXO:
/* Select LFXO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFXO;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCLFXOSEL)==0);
break;
case cmuSelect_LFRCO:
/* Select LFRCO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFRCO;
/* Wait until clock is activated */
while((CMU->STATUS & CMU_STATUS_USBCLFRCOSEL)==0);
break;
default:
/* Illegal clock source for USB */
EFM_ASSERT(0);
return;
}
/* Wait until clock has been activated */
break;
#endif
default:
EFM_ASSERT(0);
break;
}
}
/**************************************************************************//**
* @brief
* CMU low frequency register synchronization freeze control.
*
* @details
* Some CMU registers requires synchronization into the low frequency (LF)
* domain. The freeze feature allows for several such registers to be
* modified before passing them to the LF domain simultaneously (which
* takes place when the freeze mode is disabled).
*
* Another usage scenario of this feature, is when using an API (such
* as the CMU API) for modifying several bit fields consecutively in the
* same register. If freeze mode is enabled during this sequence, stalling
* can be avoided.
*
* @note
* When enabling freeze mode, this function will wait for all current
* ongoing CMU synchronization to LF domain to complete (Normally
* synchronization will not be in progress.) However for this reason, when
* using freeze mode, modifications of registers requiring LF synchronization
* should be done within one freeze enable/disable block to avoid unecessary
* stalling.
*
* @param[in] enable
* @li true - enable freeze, modified registers are not propagated to the
* LF domain
* @li false - disable freeze, modified registers are propagated to LF
* domain
*****************************************************************************/
void CMU_FreezeEnable(bool enable)
{
if (enable)
{
/* Wait for any ongoing LF synchronization to complete. This is just to */
/* protect against the rare case when a user */
/* - modifies a register requiring LF sync */
/* - then enables freeze before LF sync completed */
/* - then modifies the same register again */
/* since modifying a register while it is in sync progress should be */
/* avoided. */
while (CMU->SYNCBUSY)
;
CMU->FREEZE = CMU_FREEZE_REGFREEZE;
}
else
{
CMU->FREEZE = 0;
}
}
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
/***************************************************************************//**
* @brief
* Get AUXHFRCO band in use.
*
* @return
* AUXHFRCO band in use.
******************************************************************************/
CMU_AUXHFRCOBand_TypeDef CMU_AUXHFRCOBandGet(void)
{
return (CMU_AUXHFRCOBand_TypeDef)((CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_BAND_MASK) >>
_CMU_AUXHFRCOCTRL_BAND_SHIFT);
}
/***************************************************************************//**
* @brief
* Set AUIXHFRCO band and the tuning value based on the value in the
* calibration table made during production.
*
* @param[in] band
* AUXHFRCO band to activate.
******************************************************************************/
void CMU_AUXHFRCOBandSet(CMU_AUXHFRCOBand_TypeDef band)
{
uint32_t tuning;
/* Read tuning value from calibration table */
switch (band)
{
case cmuAUXHFRCOBand_1MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND1_MASK) >>
_DEVINFO_AUXHFRCOCAL0_BAND1_SHIFT;
break;
case cmuAUXHFRCOBand_7MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND7_MASK) >>
_DEVINFO_AUXHFRCOCAL0_BAND7_SHIFT;
break;
case cmuAUXHFRCOBand_11MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND11_MASK) >>
_DEVINFO_AUXHFRCOCAL0_BAND11_SHIFT;
break;
case cmuAUXHFRCOBand_14MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND14_MASK) >>
_DEVINFO_AUXHFRCOCAL0_BAND14_SHIFT;
break;
case cmuAUXHFRCOBand_21MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND21_MASK) >>
_DEVINFO_AUXHFRCOCAL1_BAND21_SHIFT;
break;
case cmuAUXHFRCOBand_28MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND28_MASK) >>
_DEVINFO_AUXHFRCOCAL1_BAND28_SHIFT;
break;
default:
EFM_ASSERT(0);
return;
}
/* Set band/tuning */
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL &
~(_CMU_AUXHFRCOCTRL_BAND_MASK | _CMU_AUXHFRCOCTRL_TUNING_MASK)) |
(band << _CMU_AUXHFRCOCTRL_BAND_SHIFT) |
(tuning << _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
}
#endif
/***************************************************************************//**
* @brief
* Get HFRCO band in use.
*
* @return
* HFRCO band in use.
******************************************************************************/
CMU_HFRCOBand_TypeDef CMU_HFRCOBandGet(void)
{
return (CMU_HFRCOBand_TypeDef)((CMU->HFRCOCTRL & _CMU_HFRCOCTRL_BAND_MASK) >>
_CMU_HFRCOCTRL_BAND_SHIFT);
}
/***************************************************************************//**
* @brief
* Set HFRCO band and the tuning value based on the value in the calibration
* table made during production.
*
* @param[in] band
* HFRCO band to activate.
******************************************************************************/
void CMU_HFRCOBandSet(CMU_HFRCOBand_TypeDef band)
{
uint32_t tuning;
uint32_t freq;
CMU_Select_TypeDef osc;
/* Read tuning value from calibration table */
switch (band)
{
case cmuHFRCOBand_1MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND1_MASK) >>
_DEVINFO_HFRCOCAL0_BAND1_SHIFT;
break;
case cmuHFRCOBand_7MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND7_MASK) >>
_DEVINFO_HFRCOCAL0_BAND7_SHIFT;
break;
case cmuHFRCOBand_11MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND11_MASK) >>
_DEVINFO_HFRCOCAL0_BAND11_SHIFT;
break;
case cmuHFRCOBand_14MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND14_MASK) >>
_DEVINFO_HFRCOCAL0_BAND14_SHIFT;
break;
case cmuHFRCOBand_21MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND21_MASK) >>
_DEVINFO_HFRCOCAL1_BAND21_SHIFT;
break;
case cmuHFRCOBand_28MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND28_MASK) >>
_DEVINFO_HFRCOCAL1_BAND28_SHIFT;
break;
default:
EFM_ASSERT(0);
return;
}
/* If HFRCO is used for core clock, we have to consider flash access WS. */
osc = CMU_ClockSelectGet(cmuClock_HF);
if (osc == cmuSelect_HFRCO)
{
/* Configure worst case wait states for flash access before setting divider */
CMU_FlashWaitStateMax();
}
/* Set band/tuning */
CMU->HFRCOCTRL = (CMU->HFRCOCTRL &
~(_CMU_HFRCOCTRL_BAND_MASK | _CMU_HFRCOCTRL_TUNING_MASK)) |
(band << _CMU_HFRCOCTRL_BAND_SHIFT) |
(tuning << _CMU_HFRCOCTRL_TUNING_SHIFT);
/* If HFRCO is used for core clock, optimize flash WS */
if (osc == cmuSelect_HFRCO)
{
/* Update CMSIS core clock variable and get current core clock */
/* (The function will update the global variable) */
/* NOTE! We need at least 21 cycles before setting zero wait state to flash */
/* (i.e. WS0) when going from the 28MHz to 1MHz in the HFRCO band */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
CMU_FlashWaitStateControl(freq);
}
}
/***************************************************************************//**
* @brief
* Get the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @return
* The startup delay in use.
******************************************************************************/
uint32_t CMU_HFRCOStartupDelayGet(void)
{
return((CMU->HFRCOCTRL & _CMU_HFRCOCTRL_SUDELAY_MASK) >>
_CMU_HFRCOCTRL_SUDELAY_SHIFT);
}
/***************************************************************************//**
* @brief
* Set the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @param[in] delay
* The startup delay to set (<= 31).
******************************************************************************/
void CMU_HFRCOStartupDelaySet(uint32_t delay)
{
EFM_ASSERT(delay <= 31);
delay &= (_CMU_HFRCOCTRL_SUDELAY_MASK >> _CMU_HFRCOCTRL_SUDELAY_SHIFT);
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_SUDELAY_MASK)) |
(delay << _CMU_HFRCOCTRL_SUDELAY_SHIFT);
}
/***************************************************************************//**
* @brief
* Get the LCD framerate divisor (FDIV) setting.
*
* @return
* The LCD framerate divisor.
******************************************************************************/
uint32_t CMU_LCDClkFDIVGet(void)
{
#if defined(LCD_PRESENT)
return((CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK) >> _CMU_LCDCTRL_FDIV_SHIFT);
#else
return 0;
#endif /* defined(LCD_PRESENT) */
}
/***************************************************************************//**
* @brief
* Set the LCD framerate divisor (FDIV) setting.
*
* @note
* The FDIV field (CMU LCDCTRL register) should only be modified while the
* LCD module is clock disabled (CMU LFACLKEN0.LCD bit is 0). This function
* will NOT modify FDIV if the LCD module clock is enabled. Please refer to
* CMU_ClockEnable() for disabling/enabling LCD clock.
*
* @param[in] div
* The FDIV setting to use.
******************************************************************************/
void CMU_LCDClkFDIVSet(uint32_t div)
{
#if defined(LCD_PRESENT)
EFM_ASSERT(div <= cmuClkDiv_128);
/* Do not allow modification if LCD clock enabled */
if (CMU->LFACLKEN0 & CMU_LFACLKEN0_LCD)
{
return;
}
div <<= _CMU_LCDCTRL_FDIV_SHIFT;
div &= _CMU_LCDCTRL_FDIV_MASK;
CMU->LCDCTRL = (CMU->LCDCTRL & ~_CMU_LCDCTRL_FDIV_MASK) | div;
#else
(void)div; /* Unused parameter */
#endif /* defined(LCD_PRESENT) */
}
/***************************************************************************//**
* @brief
* Enable/disable oscillator.
*
* @param[in] osc
* The oscillator to enable/disable.
*
* @param[in] enable
* @li true - enable specified oscillator.
* @li false - disable specified oscillator.
*
* @param[in] wait
* Only used if @p enable is true.
* @li true - wait for oscillator start-up time to timeout before returning.
* @li false - do not wait for oscillator start-up time to timeout before
* returning.
******************************************************************************/
void CMU_OscillatorEnable(CMU_Osc_TypeDef osc, bool enable, bool wait)
{
uint32_t status;
uint32_t enBit;
uint32_t disBit;
switch (osc)
{
case cmuOsc_HFRCO:
enBit = CMU_OSCENCMD_HFRCOEN;
disBit = CMU_OSCENCMD_HFRCODIS;
status = CMU_STATUS_HFRCORDY;
break;
case cmuOsc_HFXO:
enBit = CMU_OSCENCMD_HFXOEN;
disBit = CMU_OSCENCMD_HFXODIS;
status = CMU_STATUS_HFXORDY;
break;
case cmuOsc_AUXHFRCO:
enBit = CMU_OSCENCMD_AUXHFRCOEN;
disBit = CMU_OSCENCMD_AUXHFRCODIS;
status = CMU_STATUS_AUXHFRCORDY;
break;
case cmuOsc_LFRCO:
enBit = CMU_OSCENCMD_LFRCOEN;
disBit = CMU_OSCENCMD_LFRCODIS;
status = CMU_STATUS_LFRCORDY;
break;
case cmuOsc_LFXO:
enBit = CMU_OSCENCMD_LFXOEN;
disBit = CMU_OSCENCMD_LFXODIS;
status = CMU_STATUS_LFXORDY;
break;
#if defined _CMU_LFCLKSEL_LFAE_ULFRCO
case cmuOsc_ULFRCO:
/* ULFRCO is always enabled, and cannot be turned off */
return;
#endif
default:
/* Undefined clock source */
EFM_ASSERT(0);
return;
}
if (enable)
{
CMU->OSCENCMD = enBit;
/* Wait for clock to stabilize if requested */
if (wait)
{
while (!(CMU->STATUS & status))
;
}
}
else
{
CMU->OSCENCMD = disBit;
}
/* Keep EMU module informed */
EMU_UpdateOscConfig();
}
/***************************************************************************//**
* @brief
* Get oscillator frequency tuning setting.
*
* @param[in] osc
* Oscillator to get tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO
* @li #cmuOsc_AUXHFRCO
*
* @return
* The oscillator frequency tuning setting in use.
******************************************************************************/
uint32_t CMU_OscillatorTuningGet(CMU_Osc_TypeDef osc)
{
uint32_t ret;
switch (osc)
{
case cmuOsc_LFRCO:
ret = (CMU->LFRCOCTRL & _CMU_LFRCOCTRL_TUNING_MASK) >>
_CMU_LFRCOCTRL_TUNING_SHIFT;
break;
case cmuOsc_HFRCO:
ret = (CMU->HFRCOCTRL & _CMU_HFRCOCTRL_TUNING_MASK) >>
_CMU_HFRCOCTRL_TUNING_SHIFT;
break;
case cmuOsc_AUXHFRCO:
ret = (CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_TUNING_MASK) >>
_CMU_AUXHFRCOCTRL_TUNING_SHIFT;
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return(ret);
}
/***************************************************************************//**
* @brief
* Set the oscillator frequency tuning control.
*
* @note
* Oscillator tuning is done during production, and the tuning value is
* automatically loaded after a reset. Changing the tuning value from the
* calibrated value is for more advanced use.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO
* @li #cmuOsc_AUXHFRCO
*
* @param[in] val
* The oscillator frequency tuning setting to use.
******************************************************************************/
void CMU_OscillatorTuningSet(CMU_Osc_TypeDef osc, uint32_t val)
{
switch (osc)
{
case cmuOsc_LFRCO:
EFM_ASSERT(val <= (_CMU_LFRCOCTRL_TUNING_MASK >> _CMU_LFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_LFRCOCTRL_TUNING_MASK >> _CMU_LFRCOCTRL_TUNING_SHIFT);
CMU->LFRCOCTRL = (CMU->LFRCOCTRL & ~(_CMU_LFRCOCTRL_TUNING_MASK)) |
(val << _CMU_LFRCOCTRL_TUNING_SHIFT);
break;
case cmuOsc_HFRCO:
EFM_ASSERT(val <= (_CMU_HFRCOCTRL_TUNING_MASK >> _CMU_HFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_HFRCOCTRL_TUNING_MASK >> _CMU_HFRCOCTRL_TUNING_SHIFT);
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_TUNING_MASK)) |
(val << _CMU_HFRCOCTRL_TUNING_SHIFT);
break;
case cmuOsc_AUXHFRCO:
EFM_ASSERT(val <= (_CMU_AUXHFRCOCTRL_TUNING_MASK >> _CMU_AUXHFRCOCTRL_TUNING_SHIFT));
val <<= _CMU_AUXHFRCOCTRL_TUNING_SHIFT;
val &= _CMU_AUXHFRCOCTRL_TUNING_MASK;
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL & ~(_CMU_AUXHFRCOCTRL_TUNING_MASK)) | val;
break;
default:
EFM_ASSERT(0);
break;
}
}
/**************************************************************************//**
* @brief
* Determine if currently selected PCNTn clock used is external or LFBCLK.
*
* @param[in] inst
* PCNT instance number to get currently selected clock source for.
*
* @return
* @li true - selected clock is external clock.
* @li false - selected clock is LFBCLK.
*****************************************************************************/
bool CMU_PCNTClockExternalGet(unsigned int inst)
{
bool ret;
uint32_t setting;
switch (inst)
{
#if defined(_CMU_PCNTCTRL_PCNT0CLKEN_MASK)
case 0:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT0CLKSEL_PCNT0S0;
break;
#if defined(_CMU_PCNTCTRL_PCNT1CLKEN_MASK)
case 1:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT1CLKSEL_PCNT1S0;
break;
#if defined(_CMU_PCNTCTRL_PCNT2CLKEN_MASK)
case 2:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT2CLKSEL_PCNT2S0;
break;
#endif
#endif
#endif
default:
setting = 0;
break;
}
if (setting)
{
ret = true;
}
else
{
ret = false;
}
return ret;
}
/**************************************************************************//**
* @brief
* Select PCNTn clock.
*
* @param[in] inst
* PCNT instance number to set selected clock source for.
*
* @param[in] external
* Set to true to select external clock, false to select LFBCLK.
*****************************************************************************/
void CMU_PCNTClockExternalSet(unsigned int inst, bool external)
{
#if defined(PCNT_PRESENT)
uint32_t setting = 0;
EFM_ASSERT(inst < PCNT_COUNT);
if (external)
{
setting = 1;
}
BITBAND_Peripheral(&(CMU->PCNTCTRL), (inst * 2) + 1, setting);
#else
(void)inst; /* Unused parameter */
(void)external; /* Unused parameter */
#endif
}
/** @} (end addtogroup CMU) */
/** @} (end addtogroup EFM32_Library) */