openblt/Target/Demo/ARMCM3_EFM32_Olimex_EM32G88.../Boot/lib/efm32lib/src/efm32_i2c.c

790 lines
26 KiB
C

/***************************************************************************//**
* @file
* @brief Inter-integrated Circuit (I2C) Peripheral API for EFM32.
* @author Energy Micro AS
* @version 2.3.2
*******************************************************************************
* @section License
* <b>(C) Copyright 2010 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* This source code is the property of Energy Micro AS. The source and compiled
* code may only be used on Energy Micro "EFM32" microcontrollers.
*
* This copyright notice may not be removed from the source code nor changed.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "efm32.h"
#include "efm32_i2c.h"
#include "efm32_cmu.h"
#include "efm32_bitband.h"
#include "efm32_assert.h"
/***************************************************************************//**
* @addtogroup EFM32_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup I2C
* @brief Inter-integrated Circuit (I2C) Peripheral API for EFM32
* @{
******************************************************************************/
/*******************************************************************************
******************************* DEFINES ***********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** Validation of I2C register block pointer reference for assert statements. */
#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_TINY_FAMILY)
#define I2C_REF_VALID(ref) ((ref) == I2C0)
#endif
#if defined(_EFM32_GIANT_FAMILY)
#define I2C_REF_VALID(ref) ((ref == I2C0) || (ref == I2C1))
#endif
/** Error flags indicating I2C transfer has failed somehow. */
/* Notice that I2C_IF_TXOF (transmit overflow) is not really possible with */
/* this SW supporting master mode. Likewise for I2C_IF_RXUF (receive underflow) */
/* RXUF is only likely to occur with this SW if using a debugger peeking into */
/* RXDATA register. Thus, we ignore those types of fault. */
#define I2C_IF_ERRORS (I2C_IF_BUSERR | I2C_IF_ARBLOST)
/** @endcond */
/*******************************************************************************
******************************** ENUMS ************************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** Master mode transfer states. */
typedef enum
{
i2cStateStartAddrSend, /**< Send start + (first part of) address. */
i2cStateAddrWFAckNack, /**< Wait for ACK/NACK on (first part of) address. */
i2cStateAddrWF2ndAckNack, /**< Wait for ACK/NACK on second part of 10 bit address. */
i2cStateRStartAddrSend, /**< Send repeated start + (first part of) address. */
i2cStateRAddrWFAckNack, /**< Wait for ACK/NACK on address sent after repeated start. */
i2cStateDataSend, /**< Send data. */
i2cStateDataWFAckNack, /**< Wait for ACK/NACK on data sent. */
i2cStateWFData, /**< Wait for data. */
i2cStateWFStopSent, /**< Wait for STOP to have been transmitted. */
i2cStateDone /**< Transfer completed successfully. */
} I2C_TransferState_TypeDef;
/** @endcond */
/*******************************************************************************
******************************* STRUCTS ***********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/** Structure used to store state information on an ongoing master mode transfer. */
typedef struct
{
/** Current state. */
I2C_TransferState_TypeDef state;
/** Result return code. */
I2C_TransferReturn_TypeDef result;
/** Offset in current sequence buffer. */
uint16_t offset;
/* Index to current sequence buffer in use. */
uint8_t bufIndx;
/** Reference to I2C transfer sequence definition provided by user. */
I2C_TransferSeq_TypeDef *seq;
} I2C_Transfer_TypeDef;
/** @endcond */
/*******************************************************************************
***************************** LOCAL DATA *******^**************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/**
* Lookup table for Nlow + Nhigh setting defined by CLHR. Set undefined
* index (0x3) to reflect default setting just in case.
*/
static const uint8_t i2cNSum[] = { 4 + 4, 6 + 3, 11 + 3, 4 + 4 };
/** Transfer state info for ongoing master mode transfer */
static I2C_Transfer_TypeDef i2cTransfer[I2C_COUNT];
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Get current configured I2C bus frequency.
*
* @details
* This frequency is only of relevance when acting as master.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @return
* Current I2C frequency in Hz.
******************************************************************************/
uint32_t I2C_BusFreqGet(I2C_TypeDef *i2c)
{
uint32_t hfperclk;
uint32_t n;
/* Max frequency is given by fSCL = fHFPERCLK/((Nlow + Nhigh)(DIV + 1) + 4) */
hfperclk = CMU_ClockFreqGet(cmuClock_HFPER);
n = (uint32_t)(i2cNSum[(i2c->CTRL & _I2C_CTRL_CLHR_MASK) >> _I2C_CTRL_CLHR_SHIFT]);
return(hfperclk / ((n * (i2c->CLKDIV + 1)) + 4));
}
/***************************************************************************//**
* @brief
* Set I2C bus frequency.
*
* @details
* The bus frequency is only of relevance when acting as a master. The bus
* frequency should not be set higher than the max frequency accepted by the
* slowest device on the bus.
*
* Notice that due to asymmetric requirements on low and high I2C clock
* cycles by the I2C specification, the actual max frequency allowed in order
* to comply with the specification may be somewhat lower than expected.
*
* Please refer to the reference manual, details on I2C clock generation,
* for max allowed theoretical frequencies for different modes.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @param[in] refFreq
* I2C reference clock frequency in Hz that will be used. If set to 0,
* the currently configured reference clock is assumed. Setting it to a higher
* than actual configured value only has the consequence of reducing the real
* I2C frequency.
*
* @param[in] freq
* Bus frequency to set (actual bus speed may be lower due to integer
* prescaling). Safe (according to I2C specification) max frequencies for
* standard, fast and fast+ modes are available using I2C_FREQ_ defines.
* (Using I2C_FREQ_ defines requires corresponding setting of @p type.)
* Slowest slave device on bus must always be considered.
*
* @param[in] type
* Clock low to high ratio type to use. If not using i2cClockHLRStandard,
* make sure all devices on the bus support the specified mode. Using a
* non-standard ratio is useful to achieve higher bus clock in fast and
* fast+ modes.
******************************************************************************/
void I2C_BusFreqSet(I2C_TypeDef *i2c,
uint32_t refFreq,
uint32_t freq,
I2C_ClockHLR_TypeDef type)
{
uint32_t n;
uint32_t div;
/* Unused parameter */
(void)type;
/* Avoid divide by 0 */
EFM_ASSERT(freq);
if (!freq)
{
return;
}
/* Frequency is given by fSCL = fHFPERCLK/((Nlow + Nhigh)(DIV + 1) + 4), thus */
/* DIV = ((fHFPERCLK - 4fSCL)/((Nlow + Nhigh)fSCL)) - 1 */
if (!refFreq)
{
refFreq = CMU_ClockFreqGet(cmuClock_HFPER);
}
n = (uint32_t)(i2cNSum[(i2c->CTRL & _I2C_CTRL_CLHR_MASK) >> _I2C_CTRL_CLHR_SHIFT]);
div = (refFreq - (4 * freq)) / (n * freq);
EFM_ASSERT(div);
if (div)
{
div--;
}
/* Clock divisor must be at least 1 in slave mode according to reference */
/* manual (in which case there is normally no need to set bus frequency). */
if ((i2c->CTRL & I2C_CTRL_SLAVE) && !div)
{
div = 1;
}
EFM_ASSERT(div <= _I2C_CLKDIV_DIV_MASK);
i2c->CLKDIV = div;
}
/***************************************************************************//**
* @brief
* Enable/disable I2C.
*
* @note
* After enabling the I2C (from being disabled), the I2C is in BUSY state.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @param[in] enable
* true to enable counting, false to disable.
******************************************************************************/
void I2C_Enable(I2C_TypeDef *i2c, bool enable)
{
EFM_ASSERT(I2C_REF_VALID(i2c));
BITBAND_Peripheral(&(i2c->CTRL), _I2C_CTRL_EN_SHIFT, (unsigned int)enable);
}
/***************************************************************************//**
* @brief
* Initialize I2C.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @param[in] init
* Pointer to I2C initialization structure.
******************************************************************************/
void I2C_Init(I2C_TypeDef *i2c, const I2C_Init_TypeDef *init)
{
EFM_ASSERT(I2C_REF_VALID(i2c));
i2c->IEN = 0;
i2c->IFC = _I2C_IFC_MASK;
I2C_BusFreqSet(i2c, init->refFreq, init->freq, init->clhr);
BITBAND_Peripheral(&(i2c->CTRL),
_I2C_CTRL_SLAVE_SHIFT,
~((unsigned int)(init->master)));
BITBAND_Peripheral(&(i2c->CTRL),
_I2C_CTRL_EN_SHIFT,
(unsigned int)(init->enable));
}
/***************************************************************************//**
* @brief
* Reset I2C to same state as after a HW reset.
*
* @note
* The ROUTE register is NOT reset by this function, in order to allow for
* centralized setup of this feature.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
******************************************************************************/
void I2C_Reset(I2C_TypeDef *i2c)
{
i2c->CTRL = _I2C_CTRL_RESETVALUE;
i2c->CLKDIV = _I2C_CLKDIV_RESETVALUE;
i2c->SADDR = _I2C_SADDR_RESETVALUE;
i2c->SADDRMASK = _I2C_SADDRMASK_RESETVALUE;
i2c->IEN = _I2C_IEN_RESETVALUE;
i2c->IFC = _I2C_IFC_MASK;
/* Do not reset route register, setting should be done independently */
}
/***************************************************************************//**
* @brief
* Continue an initiated I2C transfer (single master mode only).
*
* @details
* This function is used repeatedly after a I2C_TransferInit() in order to
* complete a transfer. It may be used in polled mode as the below example
* shows:
* @verbatim
* I2C_TransferReturn_TypeDef ret;
*
* // Do a polled transfer
* ret = I2C_TransferInit(I2C0, seq);
* while (ret == i2cTransferInProgress)
* {
* ret = I2C_Transfer(I2C0);
* }
* @endverbatim
* It may also be used in interrupt driven mode, where this function is invoked
* from the interrupt handler. Notice that if used in interrupt mode, NVIC
* interrupts must be configured and enabled for the I2C bus used. I2C
* peripheral specific interrupts are managed by this SW.
*
* @note
* Only single master mode is supported.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @return
* Returns status for ongoing transfer.
* @li #i2cTransferInProgress - indicates that transfer not finished.
* @li #i2cTransferDone - transfer completed successfully.
* @li otherwise some sort of error has occurred.
*
******************************************************************************/
I2C_TransferReturn_TypeDef I2C_Transfer(I2C_TypeDef *i2c)
{
uint32_t tmp;
uint32_t pending;
I2C_Transfer_TypeDef *transfer;
I2C_TransferSeq_TypeDef *seq;
EFM_ASSERT(I2C_REF_VALID(i2c));
/* Support up to 2 I2C buses */
if (i2c == I2C0)
{
transfer = i2cTransfer;
}
#if (I2C_COUNT > 1)
else if (i2c == I2C1)
{
transfer = i2cTransfer + 1;
}
#endif
else
{
return(i2cTransferUsageFault);
}
seq = transfer->seq;
for (;; )
{
pending = i2c->IF;
/* If some sort of fault, abort transfer. */
if (pending & I2C_IF_ERRORS)
{
if (pending & I2C_IF_ARBLOST)
{
/* If arbitration fault, it indicates either a slave device */
/* not responding as expected, or other master which is not */
/* supported by this SW. */
transfer->result = i2cTransferArbLost;
}
else if (pending & I2C_IF_BUSERR)
{
/* A bus error indicates a misplaced start or stop, which should */
/* not occur in master mode controlled by this SW. */
transfer->result = i2cTransferBusErr;
}
/* If error situation occurred, it is difficult to know */
/* exact cause and how to resolve. It will be up to a wrapper */
/* to determine how to handle a fault/recovery if possible. */
transfer->state = i2cStateDone;
goto done;
}
switch (transfer->state)
{
/***************************************************/
/* Send first start+address (first byte if 10 bit) */
/***************************************************/
case i2cStateStartAddrSend:
if (seq->flags & I2C_FLAG_10BIT_ADDR)
{
tmp = (((uint32_t)(seq->addr) >> 8) & 0x06) | 0xf0;
/* In 10 bit address mode, the address following the first */
/* start always indicate write. */
}
else
{
tmp = (uint32_t)(seq->addr) & 0xfe;
if (seq->flags & I2C_FLAG_READ)
{
/* Indicate read request */
tmp |= 1;
}
}
transfer->state = i2cStateAddrWFAckNack;
i2c->TXDATA = tmp; /* Data not transmitted until START sent */
i2c->CMD = I2C_CMD_START;
goto done;
/*******************************************************/
/* Wait for ACK/NACK on address (first byte if 10 bit) */
/*******************************************************/
case i2cStateAddrWFAckNack:
if (pending & I2C_IF_NACK)
{
i2c->IFC = I2C_IFC_NACK;
transfer->result = i2cTransferNack;
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_STOP;
}
else if (pending & I2C_IF_ACK)
{
i2c->IFC = I2C_IFC_ACK;
/* If 10 bit address, send 2nd byte of address. */
if (seq->flags & I2C_FLAG_10BIT_ADDR)
{
transfer->state = i2cStateAddrWF2ndAckNack;
i2c->TXDATA = (uint32_t)(seq->addr) & 0xff;
}
else
{
/* Determine whether receiving or sending data */
if (seq->flags & I2C_FLAG_READ)
{
transfer->state = i2cStateWFData;
}
else
{
transfer->state = i2cStateDataSend;
continue;
}
}
}
goto done;
/******************************************************/
/* Wait for ACK/NACK on second byte of 10 bit address */
/******************************************************/
case i2cStateAddrWF2ndAckNack:
if (pending & I2C_IF_NACK)
{
i2c->IFC = I2C_IFC_NACK;
transfer->result = i2cTransferNack;
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_STOP;
}
else if (pending & I2C_IF_ACK)
{
i2c->IFC = I2C_IFC_ACK;
/* If using plain read sequence with 10 bit address, switch to send */
/* repeated start. */
if (seq->flags & I2C_FLAG_READ)
{
transfer->state = i2cStateRStartAddrSend;
}
/* Otherwise expected to write 0 or more bytes */
else
{
transfer->state = i2cStateDataSend;
}
continue;
}
goto done;
/*******************************/
/* Send repeated start+address */
/*******************************/
case i2cStateRStartAddrSend:
if (seq->flags & I2C_FLAG_10BIT_ADDR)
{
tmp = ((seq->addr >> 8) & 0x06) | 0xf0;
}
else
{
tmp = seq->addr & 0xfe;
}
/* If this is a write+read combined sequence, then read is about to start */
if (seq->flags & I2C_FLAG_WRITE_READ)
{
/* Indicate read request */
tmp |= 1;
}
transfer->state = i2cStateRAddrWFAckNack;
/* We have to write START cmd first since repeated start, otherwise */
/* data would be sent first. */
i2c->CMD = I2C_CMD_START;
i2c->TXDATA = tmp;
goto done;
/**********************************************************************/
/* Wait for ACK/NACK on repeated start+address (first byte if 10 bit) */
/**********************************************************************/
case i2cStateRAddrWFAckNack:
if (pending & I2C_IF_NACK)
{
i2c->IFC = I2C_IFC_NACK;
transfer->result = i2cTransferNack;
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_STOP;
}
else if (pending & I2C_IF_ACK)
{
i2c->IFC = I2C_IFC_ACK;
/* Determine whether receiving or sending data */
if (seq->flags & I2C_FLAG_WRITE_READ)
{
transfer->state = i2cStateWFData;
}
else
{
transfer->state = i2cStateDataSend;
continue;
}
}
goto done;
/*****************************/
/* Send a data byte to slave */
/*****************************/
case i2cStateDataSend:
/* Reached end of data buffer? */
if (transfer->offset >= seq->buf[transfer->bufIndx].len)
{
/* Move to next message part */
transfer->offset = 0;
transfer->bufIndx++;
/* Send repeated start when switching to read mode on 2nd buffer */
if (seq->flags & I2C_FLAG_WRITE_READ)
{
transfer->state = i2cStateRStartAddrSend;
continue;
}
/* Only writing from one buffer, or finished both buffers */
if ((seq->flags & I2C_FLAG_WRITE) || (transfer->bufIndx > 1))
{
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_STOP;
goto done;
}
/* Reprocess in case next buffer is empty */
continue;
}
/* Send byte */
i2c->TXDATA = (uint32_t)(seq->buf[transfer->bufIndx].data[transfer->offset++]);
transfer->state = i2cStateDataWFAckNack;
goto done;
/*********************************************************/
/* Wait for ACK/NACK from slave after sending data to it */
/*********************************************************/
case i2cStateDataWFAckNack:
if (pending & I2C_IF_NACK)
{
i2c->IFC = I2C_IFC_NACK;
transfer->result = i2cTransferNack;
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_STOP;
}
else if (pending & I2C_IF_ACK)
{
i2c->IFC = I2C_IFC_ACK;
transfer->state = i2cStateDataSend;
continue;
}
goto done;
/****************************/
/* Wait for data from slave */
/****************************/
case i2cStateWFData:
if (pending & I2C_IF_RXDATAV)
{
uint8_t data;
/* Must read out data in order to not block further progress */
data = (uint8_t)(i2c->RXDATA);
/* Make sure not storing beyond end of buffer just in case */
if (transfer->offset < seq->buf[transfer->bufIndx].len)
{
seq->buf[transfer->bufIndx].data[transfer->offset++] = data;
}
/* If we have read all requested data, then the sequence should end */
if (transfer->offset >= seq->buf[transfer->bufIndx].len)
{
transfer->state = i2cStateWFStopSent;
i2c->CMD = I2C_CMD_NACK;
i2c->CMD = I2C_CMD_STOP;
}
else
{
/* Send ACK and wait for next byte */
i2c->CMD = I2C_CMD_ACK;
}
}
goto done;
/***********************************/
/* Wait for STOP to have been sent */
/***********************************/
case i2cStateWFStopSent:
if (pending & I2C_IF_MSTOP)
{
i2c->IFC = I2C_IFC_MSTOP;
transfer->state = i2cStateDone;
}
goto done;
/******************************/
/* Unexpected state, SW fault */
/******************************/
default:
transfer->result = i2cTransferSwFault;
transfer->state = i2cStateDone;
goto done;
}
}
done:
if (transfer->state == i2cStateDone)
{
/* Disable interrupt sources when done */
i2c->IEN = 0;
/* Update result unless some fault already occurred */
if (transfer->result == i2cTransferInProgress)
{
transfer->result = i2cTransferDone;
}
}
/* Until transfer is done keep returning i2cTransferInProgress */
else
{
return(i2cTransferInProgress);
}
return transfer->result;
}
/***************************************************************************//**
* @brief
* Prepare and start an I2C transfer (single master mode only).
*
* @details
* This function must be invoked in order to start an I2C transfer
* sequence. In order to actually complete the transfer, I2C_Transfer() must
* be used either in polled mode or by adding a small driver wrapper utilizing
* interrupts.
*
* @note
* Only single master mode is supported.
*
* @param[in] i2c
* Pointer to I2C peripheral register block.
*
* @param[in] seq
* Pointer to sequence structure defining the I2C transfer to take place. The
* referenced structure must exist until the transfer has fully completed.
*
* @return
* Returns status for ongoing transfer:
* @li #i2cTransferInProgress - indicates that transfer not finished.
* @li otherwise some sort of error has occurred.
******************************************************************************/
I2C_TransferReturn_TypeDef I2C_TransferInit(I2C_TypeDef *i2c,
I2C_TransferSeq_TypeDef *seq)
{
I2C_Transfer_TypeDef *transfer;
EFM_ASSERT(I2C_REF_VALID(i2c));
EFM_ASSERT(seq);
/* Support up to 2 I2C buses */
if (i2c == I2C0)
{
transfer = i2cTransfer;
}
#if (I2C_COUNT > 1)
else if (i2c == I2C1)
{
transfer = i2cTransfer + 1;
}
#endif
else
{
return(i2cTransferUsageFault);
}
/* Check if in busy state. Since this SW assumes single master, we can */
/* just issue an abort. The BUSY state is normal after a reset. */
if (i2c->STATE & I2C_STATE_BUSY)
{
i2c->CMD = I2C_CMD_ABORT;
}
/* Make sure user is not trying to read 0 bytes, it is not */
/* possible according to I2C spec, since slave will always start */
/* sending first byte ACK on address. The read operation can */
/* only be stopped by NACKing a received byte, ie minimum 1 byte. */
if (((seq->flags & I2C_FLAG_READ) && !(seq->buf[0].len)) ||
((seq->flags & I2C_FLAG_WRITE_READ) && !(seq->buf[1].len))
)
{
return(i2cTransferUsageFault);
}
/* Prepare for a transfer */
transfer->state = i2cStateStartAddrSend;
transfer->result = i2cTransferInProgress;
transfer->offset = 0;
transfer->bufIndx = 0;
transfer->seq = seq;
/* Ensure buffers are empty */
i2c->CMD = I2C_CMD_CLEARPC | I2C_CMD_CLEARTX;
if (i2c->IF & I2C_IF_RXDATAV)
{
i2c->RXDATA;
}
/* Clear all pending interrupts prior to starting transfer. */
i2c->IFC = _I2C_IFC_MASK;
/* Enable those interrupts we are interested in throughout transfer. */
/* Notice that the I2C interrupt must also be enabled in the NVIC, but */
/* that is left for an additional driver wrapper. */
i2c->IEN = I2C_IF_NACK | I2C_IF_ACK | I2C_IF_MSTOP |
I2C_IF_RXDATAV | I2C_IF_ERRORS;
/* Start transfer */
return(I2C_Transfer(i2c));
}
/** @} (end addtogroup I2C) */
/** @} (end addtogroup EFM32_Library) */