openblt/Host/Source/LibOpenBLT/port/windows/canif/kvaser/canlib.h

5489 lines
208 KiB
C

/**
* \section LICENSE
* Copyright 1994-2015 by KVASER AB, SWEDEN
*
* WWW: http://www.kvaser.com
*
* This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license.
*
* \section DESCRIPTION
*
* Definitions for the CANLIB API.
*
* \file canlib.h
* \author Kvaser AB
*
* \note MATLAB users on Windows: if you define WIN32_LEAN_AND_MEAN before
* including this file, you will see a lot less warnings.
*
* \defgroup General General
* \defgroup CAN CAN
* \defgroup ObjectBuffers Object buffers
* \win_start
* \defgroup TimeDomainHandling Time Domain Handling
* \defgroup NamedParameterSettings Named Parameter Settings
* \defgroup tScript t-script
* \win_end
*/
#ifndef _CANLIB_H_
#define _CANLIB_H_
#include <stdlib.h>
# include <windows.h>
# include "predef.h"
# include "canevt.h"
# define CANLIB_DECLARE_ALL
#include "canstat.h"
/** Handle to an opened circuit. */
typedef int canHandle;
# define canINVALID_HANDLE (-1)
/** Handle to an opened circuit, created with \ref canOpenChannel(). */
# define CanHandle int
/** Denotes an invalid circuit handle. */
/** Notify message sent to the application window */
# define WM__CANLIB (WM_USER+16354)
/**
* \name canOPEN_xxx
* \anchor canOPEN_xxx
*
* These defines are used in \ref canOpenChannel().
*
* @{
*/
/**
* Don't allow sharing of this circuit between applications.
*
* This define is used in \ref canOpenChannel()
*/
#define canOPEN_EXCLUSIVE 0x0008
/**
* This flag causes two things to happen:
*
* \li The call will fail if the specified circuit doesn't allow extended CAN
* (CAN 2.0B).
*
* \li If no frame-type flag is specified in a call to \ref canWrite, it is assumed
* that extended CAN should be used.
*
* This define is used in \ref canOpenChannel().
*/
#define canOPEN_REQUIRE_EXTENDED 0x0010
/**
* Allow opening of virtual channels as well as physical channels.
*
* This define is used in \ref canOpenChannel().
*
* \sa \ref page_user_guide_virtual_info
*/
# define canOPEN_ACCEPT_VIRTUAL 0x0020
/**
* Open the channel even if it is opened for exclusive
* access already.
*
* \warning Use this flag with caution.
*
* This define is used in \ref canOpenChannel().
*/
# define canOPEN_OVERRIDE_EXCLUSIVE 0x0040
/**
* Fail the call if the channel cannot be opened with init access.
*
* Init access means that the thread that owns the handle can set bit rate and
* CAN driver mode. Init access is the default. At most one thread can have
* init access to any given channel. If you try to set the bit rate or CAN
* driver mode for a handle to which you don't have init access, the call will
* silently fail (i.e. \ref canOK is returned although the call had no effect),
* unless you enable "access error reporting" by calling \ref canIoCtl(). Access
* error reporting is by default off.
*
* This define is used in \ref canOpenChannel().
*
* \sa \ref canOPEN_NO_INIT_ACCESS
*/
# define canOPEN_REQUIRE_INIT_ACCESS 0x0080
/**
* Don't open the handle with init access.
*
* This define is used in \ref canOpenChannel().
*
* \sa \ref canOPEN_REQUIRE_INIT_ACCESS
*/
# define canOPEN_NO_INIT_ACCESS 0x0100
/**
* The channel will accept messages with DLC (Data Length Code) greater than
* 8. If this flag is not used, a message with DLC > 8 will always be
* reported or transmitted as a message with DLC = 8. If the
* \ref canOPEN_ACCEPT_LARGE_DLC flag is used, the message will be sent and/or
* received with the true DLC, which can be at most 15.
*
* \note The length of the message is always at most 8.
*
* This define is used in \ref canOpenChannel().
*/
# define canOPEN_ACCEPT_LARGE_DLC 0x0200 // DLC can be greater than 8
/**
* The channel will use the CAN FD protocol, ISO compliant. This also means that messages with
* \ref canFDMSG_xxx flags can now be used.
*
* This define is used in \ref canOpenChannel().
*/
# define canOPEN_CAN_FD 0x0400
/**
* The channel will use the CAN FD NON-ISO protocol.
* Use this if you want to configure the can controller to be able to communicate with
* a can controller designed prior to the release of the CAN FD ISO specification.
*
* Non ISO mode implies:
* \li The stuff bit counter will not be included in the frame format.
* \li Initial value for CRC17 and CRC21 will be zero.
*
* This also means that messages with \ref canFDMSG_xxx flags can now be used.
*
* This define is used in \ref canOpenChannel().
*/
# define canOPEN_CAN_FD_NONISO 0x0800
/** @} */
/**
* \ingroup CAN
* \name canFILTER_xxx
* \anchor canFILTER_xxx
*
* Flags for \ref canAccept().
*
* @{
*/
#define canFILTER_ACCEPT 1
#define canFILTER_REJECT 2
/** Sets the code for standard (11-bit) identifiers. */
#define canFILTER_SET_CODE_STD 3
/** Sets the mask for standard (11-bit) identifiers. */
#define canFILTER_SET_MASK_STD 4
/** Sets the code for extended (29-bit) identifiers. */
#define canFILTER_SET_CODE_EXT 5
/** Sets the mask for extended (29-bit) identifiers. */
#define canFILTER_SET_MASK_EXT 6
#define canFILTER_NULL_MASK 0L
/** @} */
/**
* \ingroup CAN
* \name canDRIVER_xxx
* \anchor canDRIVER_xxx
*
* CAN driver types - not all are supported on all cards.
*
* @{
*/
/**
* The "normal" driver type (push-pull). This is the default.
*/
#define canDRIVER_NORMAL 4
/**
* Sets the CAN controller in Silent Mode; that is, it doesn't send anything,
* not even ACK bits, on the bus. Reception works as usual.
*
* \note The values 2,3,5,6,7 are reserved values for compatibility reasons.
*/
#define canDRIVER_SILENT 1
/**
* Self-reception. Not implemented.
*/
#define canDRIVER_SELFRECEPTION 8
/**
* The driver is turned off. Not implemented in all types of hardware.
*/
#define canDRIVER_OFF 0
/** @} */
/**
* \ingroup CAN
* \anchor BAUD_xxx
* \anchor canBITRATE_xxx
* \anchor canFD_BITRATE_xxx
* \name canBITRATE_xxx
*
* Common bus speeds. Used in \ref canSetBusParams() and \ref canSetBusParamsC200().
* The values are translated in canlib, \ref canTranslateBaud().
*
* \note The \ref BAUD_xxx names are only retained for compability.
*
* \sa \ref page_user_guide_misc_bitrate
*
* @{
*/
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 1 Mbit/s. */
#define canBITRATE_1M (-1)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 500 kbit/s. */
#define canBITRATE_500K (-2)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 250 kbit/s. */
#define canBITRATE_250K (-3)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 125 kbit/s. */
#define canBITRATE_125K (-4)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 100 kbit/s. */
#define canBITRATE_100K (-5)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 62 kbit/s. */
#define canBITRATE_62K (-6)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 50 kbit/s. */
#define canBITRATE_50K (-7)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 83 kbit/s. */
#define canBITRATE_83K (-8)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsC200(). Indicate a bitrate of 10 kbit/s. */
#define canBITRATE_10K (-9)
// CAN FD Bit Rates
/** Used in \ref canSetBusParams() and \ref canSetBusParamsFd() when using the
CAN FD protocol. Indicates a bitrate of 0.5 Mbit/s and sampling point at
80%. */
#define canFD_BITRATE_500K_80P (-1000)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsFd() when using the
CAN FD protocol. Indicates a bitrate of 1.0 Mbit/s and sampling point at
80%. */
#define canFD_BITRATE_1M_80P (-1001)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsFd() when using the
CAN FD protocol. Indicates a bitrate of 2.0 Mbit/s and sampling point at
80%. */
#define canFD_BITRATE_2M_80P (-1002)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsFd() when using the
CAN FD protocol. Indicates a bitrate of 4.0 Mbit/s and sampling point at
80%. */
#define canFD_BITRATE_4M_80P (-1003)
/** Used in \ref canSetBusParams() and \ref canSetBusParamsFd() when using the
CAN FD protocol. Indicates a bitrate of 8.0 Mbit/s and sampling point at
60%. */
#define canFD_BITRATE_8M_60P (-1004)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_1M instead. */
#define BAUD_1M (-1)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_500K instead. */
#define BAUD_500K (-2)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_250K instead. */
#define BAUD_250K (-3)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_125K instead. */
#define BAUD_125K (-4)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_100K instead. */
#define BAUD_100K (-5)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_62K instead. */
#define BAUD_62K (-6)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_50K instead. */
#define BAUD_50K (-7)
/** The \ref BAUD_xxx names are deprecated, use \ref canBITRATE_83K instead. */
#define BAUD_83K (-8)
/** @} */
//
// Define CANLIBAPI unless it's done already.
// (canlib.c provides its own definitions of CANLIBAPI, DLLIMPORT
// and DLLEXPORT before including this file.)
//
#ifndef CANLIBAPI
# define CANLIBAPI __stdcall
# define DLLIMPORT __declspec(dllimport)
# define DLLEXPORT __declspec(dllexport)
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup General
*
* \source_cs <b>static void canInitializeLibrary(void);</b>
*
* \source_delphi <b>procedure canInitializeLibrary; </b>
* \source_end
* This function must be called before any other functions is used. It will
* initialize the driver.
*
* You may call \ref canInitializeLibrary() more than once. The actual
* initialization will take place only once.
*
* Any errors encountered during library initialization will be "silent" and an
* appropriate \ref canERR_xxx error code will be returned later on when
* \ref canOpenChannel() (or any other API call that requires initialization) is
* called.
*
* \sa \ref page_code_snippets_examples
*
*/
void CANLIBAPI canInitializeLibrary (void);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canClose(int handle);</b>
*
* \source_delphi <b>function canClose(handle: canHandle): canStatus;</b>
* \source_end
*
* Closes the channel associated with the handle. If no other threads
* are using the CAN circuit, it is taken off bus. The handle can not be
* used for further references to the channel, so any variable containing
* it should be zeroed.
*
* \ref canClose() will almost always return \ref canOK; the specified handle is closed
* on an best-effort basis.
*
* \param[in] hnd An open handle to a CAN channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref canOpenChannel(), \ref canBusOn(), \ref canBusOff()
*/
canStatus CANLIBAPI canClose (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canBusOn(int handle);</b>
*
* \source_delphi <b>function canBusOn(handle: canHandle): canStatus; </b>
* \source_end
*
* Takes the specified channel on-bus.
*
* If you are using multiple handles to the same physical channel, for example
* if you are writing a threaded application, you must call \ref canBusOn() once for
* each handle. The same applies to \ref canBusOff() - the physical channel will not
* go off bus until the last handle to the channel goes off bus.
*
* \param[in] hnd An open handle to a CAN channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref canBusOff(), \ref canResetBus()
*
*/
canStatus CANLIBAPI canBusOn (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canBusOff(int handle);</b>
*
* \source_delphi <b>function canBusOff(handle: canHandle): canStatus; </b>
* \source_end
*
* Takes the specified channel off-bus.
*
* \param[in] hnd An open handle to a CAN channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref canBusOn(), \ref canResetBus()
*
*/
canStatus CANLIBAPI canBusOff (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetBusParams(int handle, int freq, int tseg1, int tseg2, int sjw, int noSamp, int syncmode); </b>
*
* \source_delphi <b>function canSetBusParams(handle: canHandle; freq: Longint; tseg1, tseg2, sjw, noSamp, syncmode: Cardinal): canStatus; </b>
* \source_end
*
* This function sets the nominal bus timing parameters for the specified CAN
* controller.
*
* The library provides default values for \a tseg1, \a tseg2, \a sjw and \a
* noSamp when \a freq is specified to one of the pre-defined constants,
* \ref canBITRATE_xxx for classic CAN and \ref canFD_BITRATE_xxx for CAN FD.
*
* If \a freq is any other value, no default values are supplied by the
* library.
*
* If you are using multiple handles to the same physical channel, for example
* if you are writing a threaded application, you must call \ref canBusOff() once
* for each handle. The same applies to \ref canBusOn() - the physical channel will
* not go off bus until the last handle to the channel goes off bus.
*
* \note Use \ref canSetBusParamsC200() to set the bus timing parameters in the
* ubiquitous 82c200 bit-timing register format.
*
* \param[in] hnd An open handle to a CAN controller.
* \param[in] freq Bit rate (measured in bits per second); or one of the
* predefined constants (\ref canBITRATE_xxx for classic
* CAN and \ref canFD_BITRATE_xxx for CAN FD).
* \param[in] tseg1 Time segment 1, that is, the number of quanta from (but not
* including) the Sync Segment to the sampling point.
* \param[in] tseg2 Time segment 2, that is, the number of quanta from the sampling
* point to the end of the bit.
* \param[in] sjw The Synchronization Jump Width.
* \param[in] noSamp The number of sampling points; can be 1 or 3.
* \param[in] syncmode Unsupported and ignored.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_bit_rate, \ref page_user_guide_misc_bitrate,
* \ref page_user_guide_init_bit_rate, \ref page_code_snippets_examples
* \sa \ref canSetBusParamsC200(), \ref canGetBusParams()
*
*/
canStatus CANLIBAPI canSetBusParams (const CanHandle hnd,
long freq,
unsigned int tseg1,
unsigned int tseg2,
unsigned int sjw,
unsigned int noSamp,
unsigned int syncmode);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetBusParamsFd(int hnd, int freq_brs, int tseg1_brs, int tseg2_brs, int sjw_brs);</b>
*
* \source_delphi <b>function canSetBusParamsFd(hnd: canHandle; freq_brs: Longint; tseg1_brs, tseg2_brs, sjw_brs): canStatus;</b>
* \source_end
*
* This function sets the data phase bus timing parameters for the specified
* CAN controller.
*
* The library provides default values for \a tseg1_brs, \a tseg2_brs and
* \a sjw_brs when \a freq_brs is specified to one of the pre-defined
* constants, \ref canFD_BITRATE_xxx.
*
* If \a freq_brs is any other value, no default values are supplied
* by the library.
*
* \param[in] hnd An open handle to a CAN controller.
* \param[in] freq_brs CAN FD data bit rate (measured in bits per second); or
* one of the predefined constants \ref
* canFD_BITRATE_xxx.
* \param[in] tseg1_brs Time segment 1, that is, the number of quanta from (but not
* including) the Sync Segment to the sampling point.
* \param[in] tseg2_brs Time segment 2, that is, the number of quanta from the sampling
* point to the end of the bit.
* \param[in] sjw_brs The Synchronization Jump Width.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
canStatus CANLIBAPI canSetBusParamsFd(const CanHandle hnd,
long freq_brs,
unsigned int tseg1_brs,
unsigned int tseg2_brs,
unsigned int sjw_brs);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetBusParams(int handle, out long freq, out int tseg1, out int tseg2, out int sjw, out int noSamp, out int syncmode);</b>
*
* \source_delphi <b>function canGetBusParams(handle: canHandle; var freq: Longint; var tseg1, tseg2, sjw, noSamp, syncmode: Cardinal): canStatus; </b>
* \source_end
*
* This function retrieves the current nominal bus parameters for the specified
* channel.
*
* The anatomy of a CAN bit is discussed in detail at Kvaser's
* web site at <a href="http://www.kvaser.com">www.kvaser.com</a>.
*
* \param[in] hnd An open handle to a CAN controller.
* \param[out] freq Bit rate (bits per second).
* \param[out] tseg1 Time segment 1, that is, the number of quanta from (but not
* including) the Sync Segment to the sampling point.
* \param[out] tseg2 Time segment 2, that is, the number of quanta from the sampling
* point to the end of the bit.
* \param[out] sjw The Synchronization Jump Width.
* \param[out] noSamp The number of sampling points; can be 1 or 3.
* \param[out] syncmode Unsupported, always read as one.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_bit_rate, \ref page_user_guide_init_bit_rate
* \sa \ref canSetBusParams(), \ref canSetBusParamsC200()
*
*/
canStatus CANLIBAPI canGetBusParams (const CanHandle hnd,
long *freq,
unsigned int *tseg1,
unsigned int *tseg2,
unsigned int *sjw,
unsigned int *noSamp,
unsigned int *syncmode);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetBusParamsFd(int hnd, out long freq_brs, out int tseg1_brs, out int tseg2_brs, out int sjw_brs);</b>
*
* \source_delphi <b>function canGetBusParamsFd(hnd: canHandle; var freq_brs: Longint; var tseg1_brs, tseg2_brs, sjw_brs): canStatus;</b>
* \source_end
*
* This function retrieves the current data bus parameters for the specified
* CAN FD channel.
*
* \param[in] hnd An open handle to a CAN FD controller.
* \param[out] freq_brs Bit rate (bits per second).
* \param[out] tseg1_brs Time segment 1, that is, the number of quanta from (but not
* including) the Sync Segment to the sampling point.
* \param[out] tseg2_brs Time segment 2, that is, the number of quanta from the sampling
* point to the end of the bit.
* \param[out] sjw_brs The Synchronization Jump Width.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
canStatus CANLIBAPI canGetBusParamsFd(const CanHandle hnd,
long *freq_brs,
unsigned int *tseg1_brs,
unsigned int *tseg2_brs,
unsigned int *sjw_brs);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetBusOutputControl(int handle, int drivertype);</b>
*
* \source_delphi <b>function canSetBusOutputControl(handle: canHandle; drivertype: Cardinal): canStatus; </b>
* \source_end
*
* This function sets the driver type for a CAN controller. This corresponds
* loosely to the bus output control register in the CAN controller, hence the
* name of this function. CANLIB does not allow for direct manipulation of the
* bus output control register; instead, symbolic constants are used to select
* the desired driver type.
*
* \note Not all CAN driver types are supported on all cards.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] drivertype Can driver type, \ref canDRIVER_xxx)
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canGetBusOutputControl()
*/
canStatus CANLIBAPI canSetBusOutputControl (const CanHandle hnd,
const unsigned int drivertype);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetBusOutputControl(int handle, out int drivertype);</b>
*
* \source_delphi <b>function canGetBusOutputControl(handle: canHandle; var drivertype: Cardinal): canStatus; </b>
* \source_end
*
* This function retrieves the current CAN controller driver type.
* This corresponds loosely to the bus output control register in the
* CAN controller, hence the name of this function. CANLIB does not
* allow for direct manipulation of the bus output control register;
* instead, symbolic constants are used to select the desired driver
* type.
*
* \note Don't confuse the CAN controller driver type with the bus driver
* type. The CAN controller is not connected directly to the CAN bus;
* instead, it is connected to a bus transceiver circuit which interfaces
* directly to the bus. The "CAN controller driver type" we are talking
* about here refers to the mode which the CAN controller uses to drive
* the bus transceiver circuit.
*
* \note Silent Mode is not supported by all CAN controllers.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[out] drivertype A pointer to an unsigned int which receives the
* current driver type. The driver type can be either
* \ref canDRIVER_NORMAL or \ref canDRIVER_SILENT.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canSetBusOutputControl()
*/
canStatus CANLIBAPI canGetBusOutputControl (const CanHandle hnd,
unsigned int *drivertype);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canAccept(int handle, int envelope, int flag);</b>
*
* \source_delphi <b>function canAccept(handle: canHandle; envelope: Longint; flag: Cardinal): canStatus; </b>
* \source_end
*
* This routine sets the message acceptance filters on a CAN channel.
*
* On some boards the acceptance filtering is done by the CAN hardware; on
* other boards (typically those with an embedded CPU,) the acceptance
* filtering is done by software. \ref canAccept() behaves in the same way for all
* boards, however.
*
* \win_start \ref canSetAcceptanceFilter() and \win_end \ref canAccept() both serve the same purpose but the
* former can set the code and mask in just one call.
*
* If you want to remove a filter, call \ref canAccept() with the mask set to 0.
*
* \note You can set the extended code and mask only on CAN boards that support
* extended identifiers.
*
* \note Not all CAN boards support different masks for standard and extended
* CAN identifiers.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] envelope The mask or code to set.
* \param[in] flag Any of \ref canFILTER_SET_CODE_STD,
* \ref canFILTER_SET_MASK_STD,
* \ref canFILTER_SET_CODE_EXT or
* \ref canFILTER_SET_MASK_EXT
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_filters,
\win_start
* \ref page_user_guide_misc_code_and_mask,
\win_end
* \ref page_code_snippets_examples
*/
canStatus CANLIBAPI canAccept (const CanHandle hnd,
const long envelope,
const unsigned int flag);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadStatus(int handle, out long flags);</b>
*
* \source_delphi <b>function canReadStatus(handle: canHandle; var flags: Longint): canStatus; </b>
* \source_end
*
* Returns the status for the specified circuit. flags points to a longword
* which receives a combination of the \ref canSTAT_xxx flags.
*
* \note \ref canReadStatus() returns the latest known status of the specified
* circuit. If a status change happens precisely when \ref canReadStatus() is
* called, it may not be reflected in the returned result.
*
* \param[in] hnd A handle to an open circuit.
* \param[out] flags Pointer to a \c DWORD which receives the status flags;
* this is a combination of any of the \ref canSTAT_xxx.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI canReadStatus (const CanHandle hnd,
unsigned long *const flags);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadErrorCounters(int handle, out int txErr, out int rxErr, out int ovErr);</b>
*
* \source_delphi <b>function canReadErrorCounters(handle: canHandle; var txErr, rxErr, ovErr: Cardinal): canStatus; </b>
* \source_end
*
* Reads the error counters of the CAN controller.
*
* \ref canReadErrorCounters() returns the latest known values of the error counters
* in the specified circuit. If the error counters change values precisely when
* \ref canReadErrorCounters() is called, it may not be reflected in the returned
* result.
*
* It is allowed to pass \c NULL as the value of the \a txErr, \a rxErr, and \a
* ovErr parameters.
*
* Use \ref canIoCtl() to clear the counters.
*
* \note Not all CAN controllers provide access to the error counters;
* in this case, an educated guess is returned.
*
* \param[in] hnd A handle to an open circuit.
* \param[out] txErr A pointer to a \c DWORD which receives the transmit error
* counter.
* \param[out] rxErr A pointer to a \c DWORD which receives the receive error
* counter.
* \param[out] ovErr A pointer to a \c DWORD which receives the number of
* overrun errors.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canIoCtl()
*/
canStatus CANLIBAPI canReadErrorCounters (const CanHandle hnd,
unsigned int *txErr,
unsigned int *rxErr,
unsigned int *ovErr);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canWrite(int handle, int id, byte[] msg, int dlc, int flag);</b>
*
* \source_delphi <b>function canWrite(handle: canHandle; id: Longint; msg: Pointer; dlc: Cardinal; flag: Cardinal): canStatus; </b>
* \source_end
*
* This function sends a CAN message. The call returns immediately after queuing
* the message to the driver.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* \note The message has been queued for transmission when this calls return.
* It has not necessarily been sent.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] id The identifier of the CAN message to send.
* \param[in] msg A pointer to the message data, or \c NULL.
* \param[in] dlc The length of the message in bytes.<br>
For Classic CAN dlc can be at most 8, unless \ref canOPEN_ACCEPT_LARGE_DLC is used.<br>
For CAN FD dlc can be one of the following 0-8, 12, 16, 20, 24, 32, 48, 64.
* \param[in] flag A combination of message flags, \ref canMSG_xxx
* (including \ref canFDMSG_xxx if the CAN FD protocol is
* enabled).
* Use this parameter to send extended (29-bit) frames
* and/or remote frames. Use \ref canMSG_EXT and/or
* \ref canMSG_RTR for this purpose.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_sending, \ref page_code_snippets_examples
* \sa \ref canWriteSync(), \ref canWriteWait()
*
*/
canStatus CANLIBAPI canWrite (const CanHandle hnd,
long id,
void *msg,
unsigned int dlc,
unsigned int flag);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canWriteSync(int handle, long timeout);</b>
*
* \source_delphi <b>function canWriteSync(handle: canHandle; timeout: Longint): canStatus; </b>
* \source_end
*
* Waits until all CAN messages for the specified handle are sent, or the
* timeout period expires.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] timeout The timeout in milliseconds. 0xFFFFFFFF gives an
* infinite timeout.
*
* \return \ref canOK (zero) if the queue emptied before the timeout period came to
* its end.
* \return \ref canERR_TIMEOUT (negative) not all messages were transmitted when
* the timeout occurred.
* \return \ref canERR_PARAM (negative) This could be caused by an erroneous
* parameter, or if you have turned TXACKs off (by using \ref canIoCtl())
* because if you do you can't use this call. The driver simply doesn't
* know when all the messages are sent!
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canWrite(), \ref canWriteWait()
*/
canStatus CANLIBAPI canWriteSync (const CanHandle hnd, unsigned long timeout);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canRead(int handle, out int id, byte[] msg, out int dlc, out int flag, out long time);</b>
*
* \source_delphi <b>function canRead(handle: canHandle; var id: Longint; msg: Pointer; var dlc: Cardinal; var flag: Cardinal; var time: Longint): canStatus; </b>
* \source_end
*
* Reads a message from the receive buffer. If no message is available, the
* function returns immediately with return code \ref canERR_NOMSG.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* It is allowed to pass \c NULL as the value of \a id, \a msg, \a dlc, \a
* flag, and \a time.
*
* \param[in] hnd A handle to an open circuit.
* \param[out] id Pointer to a buffer which receives the CAN identifier.
* This buffer will only get the identifier. To determine
* whether this identifier was standard (11-bit) or extended
* (29-bit), and/or whether it was remote or not, or if it
* was an error frame, examine the contents of the flag
* argument.
* \param[out] msg Pointer to the buffer which receives the message data.
* This buffer must be large enough (i.e. 8 bytes.) Only the
* message data is copied; the rest of the buffer is left
* as-is.
* \param[out] dlc Pointer to a buffer which receives the message length.
* \param[out] flag Pointer to a buffer which receives the message flags,
* which is a combination of the \ref canMSG_xxx and
* \ref canMSGERR_xxx values.
* \param[out] time Pointer to a buffer which receives the message time stamp.
*
* \return \ref canOK (zero) if a message was read.
* \return \ref canERR_NOMSG (negative) if there was no message available.
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_reading,
\win_start
* \ref page_user_guide_send_recv_mailboxes,
\win_end
* \ref page_code_snippets_examples,
* \ref page_user_guide_time_accuracy_and_resolution
* \sa \ref canReadSpecific(), \ref canReadSpecificSkip(), \ref canReadSync(),
* \ref canReadSyncSpecific(), \ref canReadWait()
*
*/
canStatus CANLIBAPI canRead (const CanHandle hnd,
long *id,
void *msg,
unsigned int *dlc,
unsigned int *flag,
unsigned long *time);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadWait(int handle, out int id, byte[] msg, out int dlc, out int flag, out long time, long timeout);</b>
*
* \source_delphi <b>function canReadWait(handle: canHandle; var id: Longint; msg: Pointer; var dlc: Cardinal; var flag: Cardinal; var time: Longint; timeout: Longint): canStatus; </b>
* \source_end
*
* Reads a message from the receive buffer. If no message is available, the
* function waits until a message arrives or a timeout occurs.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* It is allowed to pass \c NULL as the value of \a id, \a msg, \a dlc, \a
* flag, and \a time.
*
* \param[in] hnd A handle to an open circuit.
* \param[out] id Pointer to a buffer which receives the CAN identifier.
* This buffer will only get the identifier. To determine
* whether this identifier was standard (11-bit) or extended
* (29-bit), and/or whether it was remote or not, or if it
* was an error frame, examine the contents of the flag
* argument.
* \param[out] msg Pointer to the buffer which receives the message data.
* This buffer must be large enough (i.e. 8 bytes.).
* \param[out] dlc Pointer to a buffer which receives the message length.
* \param[out] flag Pointer to a buffer which receives the message flags,
* which is a combination of the \ref canMSG_xxx and
* \ref canMSGERR_xxx values.
* \param[out] time Pointer to a buffer which receives the message time stamp.
* \param[in] timeout If no message is immediately available, this parameter
* gives the number of milliseconds to wait for a message
* before returning. 0xFFFFFFFF gives an infinite timeout.
*
* \return \ref canOK (zero) if a message was read.
* \return \ref canERR_NOMSG (negative) if there was no message available.
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canRead(), \ref canReadSpecific(), \ref canReadSpecificSkip(),
* \ref canReadSyncSpecific(), \ref canReadSync()
*
* \sa \ref page_user_guide_time_accuracy_and_resolution
*/
canStatus CANLIBAPI canReadWait (const CanHandle hnd,
long *id,
void *msg,
unsigned int *dlc,
unsigned int *flag,
unsigned long *time,
unsigned long timeout);
#if defined(CANLIB_DECLARE_ALL)
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadSpecific(int handle, int id, byte[] msg, out int dlc, out int flag, out long time);</b>
*
* \source_delphi <b>function canReadSpecific(handle: canHandle; id: Longint; msg: Pointer; var dlc: Cardinal; var flag: Cardinal; var time: Longint): canStatus; </b>
* \source_end
*
* Reads a message with a specified identifier from the receive buffer. Any
* preceding message not matching the specified identifier will be kept
* in the receive buffer. If no message with the specified identifier is
* available, the function returns immediately with an error code.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* It is allowed to pass \c NULL as the value of \a msg, \a dlc, \a
* flag, and \a time.
*
* \note Use \ref canReadSpecific only if you for some reason must keep the unread
* messages in the queue. If this is not the case, consider using
* \ref canReadSpecificSkip() or \ref canRead() for better performance.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] id The desired CAN identifier.
* \param[out] msg Pointer to the buffer which receives the message data.
* This buffer must be large enough (i.e. 8 bytes.).
* \param[out] dlc Pointer to a buffer which receives the message length.
* \param[out] flag Pointer to a buffer which receives the message flags,
* which is a combination of the \ref canMSG_xxx and
* \ref canMSGERR_xxx values.
* \param[out] time Pointer to a buffer which receives the message time stamp.
*
* \return \ref canOK (zero) if a message was read.
* \return \ref canERR_NOMSG (negative) if a matching message was not found.
* There might be other messages in the queue, though.
* \return \ref canERR_xxx (negative) if failure
*
\win_start * \sa \ref page_user_guide_send_recv_mailboxes \ref \win_end
* page_user_guide_send_recv_reading \ref
* page_user_guide_time_accuracy_and_resolution
* \sa \ref canRead(), \ref canReadSpecificSkip(), \ref canReadSync(), \ref canReadSyncSpecific(),
* \ref canReadWait()
*
*/
canStatus CANLIBAPI canReadSpecific (const CanHandle hnd, long id, void * msg,
unsigned int * dlc, unsigned int * flag,
unsigned long * time);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadSync(int handle, long timeout);</b>
*
* \source_delphi <b>function canReadSync(handle: canHandle; timeout: Longint): canStatus; </b>
* \source_end
*
* Waits until the receive buffer contains at least one message or a timeout
* occurs.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] timeout The timeout in milliseconds. 0xFFFFFFFF gives an
* infinite timeout.
*
* \return \ref canOK (zero) if the queue contains the desired message.
* \return \ref canERR_TIMEOUT (negative) if a timeout occurs before a message
* arrived.
* \return \ref canERR_xxx (negative) if the call fails.
*
* \sa \ref canRead(), \ref canReadSpecific(), \ref canReadSpecificSkip(),
* \ref canReadSyncSpecific(), \ref canReadWait()
*/
canStatus CANLIBAPI canReadSync (const CanHandle hnd, unsigned long timeout);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadSyncSpecific(int handle, int id, long timeout);</b>
*
* \source_delphi <b>function canReadSyncSpecific(handle: canHandle; id, timeout: Longint): canStatus; </b>
* \source_end
*
* Waits until the receive queue contains a message with the specified id, or a
* timeout occurs..
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] id The desired message identifier.
* \param[in] timeout The timeout in milliseconds. 0xFFFFFFFF gives an
* infinite timeout.
*
* \return \ref canOK (zero) if the queue contains the desired message.
* \return \ref canERR_TIMEOUT (negative) if a timeout occurs before the specified
* message arrived.
* \return \ref canERR_xxx (negative) if the call fails.
*
* \sa \ref canRead(), \ref canReadSpecific(), \ref canReadSpecificSkip(),
* \ref canReadSync(), \ref canReadWait()
*/
canStatus CANLIBAPI canReadSyncSpecific (const CanHandle hnd,
long id,
unsigned long timeout);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canReadSpecificSkip(int hnd, int id, byte[] msg, out int dlc, out int flag, out long time);</b>
*
* \source_delphi <b>function canReadSpecificSkip(handle: canHandle; id: Longint; msg: Pointer; var dlc: Cardinal; var flag: Cardinal; var time: Longint): canStatus; </b>
* \source_end
*
* Reads a message with a specified identifier from the receive buffer. Any
* preceding message not matching the specified identifier will be removed
* in the receive buffer. If no message with the specified identifier is
* available, the function returns immediately with an error code.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* It is allowed to pass \c NULL as the value of \a msg, \a dlc, \a
* flag, and \a time.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] id The desired CAN identifier.
* \param[out] msg Pointer to the buffer which receives the message data.
* This buffer must be large enough (i.e. 8 bytes.).
* \param[out] dlc Pointer to a buffer which receives the message length.
* \param[out] flag Pointer to a buffer which receives the message flags,
* which is a combination of the \ref canMSG_xxx and
* \ref canMSGERR_xxx values.
* \param[out] time Pointer to a buffer which receives the message time stamp.
*
* \return \ref canOK (zero) if a matching message was found.
* \return \ref canERR_NOMSG if there was no matching message available. All other
messages (if any!) were discarded.
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_reading, \ref
* page_user_guide_time_accuracy_and_resolution
* \sa \ref canRead(), \ref canReadSpecific(), \ref canReadSync(),
* \ref canReadSyncSpecific(), \ref canReadWait()
*/
canStatus CANLIBAPI canReadSpecificSkip (const CanHandle hnd,
long id,
void * msg,
unsigned int * dlc,
unsigned int * flag,
unsigned long * time);
#endif
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetNotify(int handle, IntPtr win_handle, int aNotifyFlags);</b>
*
* \source_delphi <b>function canSetNotify(handle: canHandle; aHWnd: HWND; aNotifyFlags: Cardinal): canStatus; </b>
* \source_end
*
* This function associates a window handle with the CAN circuit. A
* \c WM__CANLIB message is sent to that window when certain events
* (specified by the \ref canNOTIFY_xxx flags) occur.
*
* When an event take place, a \c WM__CANLIB message will be sent to the window
* whose handle is aHWnd. This \c WM__CANLIB message will have:
*
* \li \c WPARAM handle to the circuit where the event occurred
* \li \c HIWORD(LPARAM) 0
* \li \c LOWORD(LPARAM) \ref canEVENT_xxx
*
* In the routine that handles \c WM__CANLIB, you can call the CANLIB API
* functions (for example, \ref canRead()) using the handle found in \c wParam.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] aHWnd Handle of the window which will receive the
* notification messages.
* \param[in] aNotifyFlags The events specified with \ref canNOTIFY_xxx, for
* which callback should be called.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \n In the routine that handles \c WM__CANLIB, you must call \ref canRead() repeatedly
* until it returns \ref canERR_NOMSG, regardless of the \c LPARAM value. This will
* flush the driver's internal event queues. If you fail to do this, no more
* events will be reported.
*
* \sa \ref page_code_snippets_examples
*/
canStatus CANLIBAPI canSetNotify (const CanHandle hnd,
HWND aHWnd,
unsigned int aNotifyFlags);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canTranslateBaud(ref int freq, out int tseg1, out int tseg2, out int sjw, out int nosamp, out int syncMode);</b>
*
* \source_delphi <b>function canTranslateBaud(var freq: longint; var tseg1, tseg2, sjw, noSamp, syncMode: Cardinal): canStatus; </b>
* \source_end
*
* This function translates the \ref canBITRATE_xxx constants to their corresponding
* bus parameter values. At return, this \a freq contains the actual bit rate
* (in bits per second). \a TSeg1 is the number of quanta (less one) in a bit
* before the sampling point. \a TSeg2 is the number of quanta after the
* sampling point.
*
* \param[in,out] freq A pointer to a \c DWORD which contains the \ref canBITRATE_xxx
* constant to translate. The bitrate constant value is
* overwritten with the frequency value.
* \param[out] tseg1 A pointer to a buffer which receives the Time segment 1,
* that is, the number of quanta from (but not including)
* the Sync Segment to the sampling point.
* \param[out] tseg2 A pointer to a buffer which receives the Time segment 2,
* that is, the number of quanta from the sampling point to
* the end of the bit.
* \param[out] sjw A pointer to a buffer which receives the Synchronization
* Jump Width.
* \param[out] nosamp A pointer to a buffer which receives the number of
* sampling points.
* \param[out] syncMode Unsupported, always read as zero. May be set to NULL.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canSetBusParams()
*/
canStatus CANLIBAPI canTranslateBaud (long *const freq,
unsigned int *const tseg1,
unsigned int *const tseg2,
unsigned int *const sjw,
unsigned int *const nosamp,
unsigned int *const syncMode);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus canGetErrorText(Canlib.canStatus err, out string buf_str);</b>
*
* \source_delphi <b>function canGetErrorText(err: canStatus; buf: PChar; bufsiz: Cardinal): canStatus; </b>
* \source_end
*
* This function translates an error code (\ref canERR_xxx)
* to a human-readable, English text.
*
* \param[in] err The error code.
* \param[out] buf The buffer which is to receive the text, which is a
* zero-terminated string (provided the buffer is large enough.)
* \param[in] bufsiz The length of the input buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
*
*/
canStatus CANLIBAPI canGetErrorText (canStatus err, char *buf, unsigned int bufsiz);
/**
* \ingroup General
*
* \source_cs <b>static short canGetVersion();</b>
*
* \source_delphi <b>function canGetVersion: Word; </b>
* \source_end
*
* \win_start
* This API call returns the version of the CANLIB API DLL (canlib32.dll). The
* most significant byte is the major version number and the least significant
* byte is the minor version number.
*
* The actual version of the different driver files can be obtained by studying
* the version resources in each of the files.
*
* \note The version number of the canlib32.dll file is not related to the
* product version of CANLIB you are using. CANLIB consists of several
* driver and DLL files. To obtain the product version, use
* \ref canGetVersionEx().
*
* \return version number of canlib32.dll
*
* \sa \ref page_user_guide_build_driver_version
* \sa \ref canGetVersionEx(), \ref canProbeVersion()
*
* \win_end
*
* \linux_start
* This API call returns the version of the CANLIB API library (libcanlib.so.x.y). The
* most significant byte is the major version number and the least significant
* byte is the minor version number.
*
* \return version number of libcanlib.so.x.y
*
* \linux_end
*
*
*/
unsigned short CANLIBAPI canGetVersion (void);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus canIoCtl(int handle, int func, int val);<br>
static Canlib.canStatus canIoCtl(int handle, int func, out int val);<br>
static Canlib.canStatus canIoCtl(int handle, int func, out string str_buf);<br>
static Canlib.canStatus canIoCtl(int handle, int func, ref object obj_buf);</b>
*
* \source_delphi <b>function canIoCtl(handle: canHandle; func: Cardinal; buf: Pointer; buflen: Cardinal): canStatus; </b>
* \source_end
*
* This API call performs several different functions; these are described
* below. The functions are handle-specific unless otherwise noted; this means
* that they affect only the handle you pass to \ref canIoCtl(), whereas other open
* handles will remain unaffected. The contents of \a buf after the call is
* dependent on the function code you specified.
*
* \param[in] hnd A handle to an open circuit.
* \param[in] func A \ref canIOCTL_xxx function code
* \param[in,out] buf Pointer to a buffer containing function-dependent data;
or a \c NULL pointer for certain function codes. The
buffer can be used for both input and output
depending on the function code. See \ref canIOCTL_xxx.
* \param[in] buflen The length of the buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI canIoCtl (const CanHandle hnd,
unsigned int func,
void *buf,
unsigned int buflen);
/* Note the difference from the windows version */
/**
* \ingroup CAN
*
* \source_cs <b>static long canReadTimer(int hnd);</b>
*
* \source_delphi <b>function canReadTimer(handle: canHandle): longint; </b>
* \source_end
*
* Reads the current time from the clock used to timestamp the
* messages for the indicated circuit.
*
* This API may return \ref canERR_INVHANDLE and/or \ref canERR_NOTINITIALIZED!
* This happens if \a hnd is invalid, or if the library was not initialized.
*
* \note \ref kvReadTimer() should be used instead since it separates the returned
* time from the error code.
*
* \note The clock used to timestamp the messages may not be available for
* direct reading on all platforms. In such cases, the PC's clock is used
* to return an approximation of the current time. Note that clock drift might
* occur in this case.
*
* \param[in] hnd A handle to an open circuit.
*
* \return The current time, with the prevailing time resolution (milliseconds
* by default).
*
* \sa \ref page_user_guide_time_accuracy_and_resolution
* \win_start
* \sa \ref kvReadTimer()
* \win_end
*/
unsigned long CANLIBAPI canReadTimer (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static int canOpenChannel(int channel, int flags);</b>
*
* \source_delphi <b>function canOpenChannel(channel: Integer; flags: Integer): canHandle; </b>
* \source_end
*
* Opens a CAN channel (circuit) and returns a handle which is used
* in subsequent calls to CANLIB.
*
*
* Channel numbering is dependent on the installed hardware. The first channel
* always has number 0.
*
* For example,
*
* \li If you have a single LAPcan, the channels are numbered 0 and 1.
*
* \li If you have a USBcan Professional, the channels are numbered 0-1
* according to the labels on the cables.
*
* \li The virtual channels come after all physical channels.
*
* If you are using multiple threads, note that the returned handle is usable
* only in the context of the thread that created it. That is, you must call
* \ref canOpenChannel() in each of the threads in your application that uses the
* CAN bus. You can open the same channel from multiple threads, but you must
* call \ref canOpenChannel() once per thread.
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* \note The handle returned may be zero which is perfectly valid.
*
* \param[in] channel The number of the channel. Channel numbering is hardware
* dependent.
* \param[in] flags A combination of \ref canOPEN_xxx flags
*
* \return Returns a handle to the opened circuit, or \ref canERR_xxx
* (negative) if the call failed.
*
* \sa \ref page_code_snippets_examples, \ref page_user_guide_virtual_info
* \sa \ref canGetNumberOfChannels(), \ref canGetChannelData(), \ref canIoCtl()
*
*/
CanHandle CANLIBAPI canOpenChannel (int channel, int flags);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus canGetNumberOfChannels(out int channelCount);</b>
*
* \source_delphi <b>function canGetNumberOfChannels(var channelCount: Integer): canStatus; </b>
* \source_end
*
* This function returns the number of available CAN channels in the
* computer. The virtual channels are included in this number.
*
* \param[out] channelCount A pointer to a \c DWORD which will receive the current
* number of channels.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples, \ref page_user_guide_virtual_info
* \sa \ref canGetChannelData()
*/
canStatus CANLIBAPI canGetNumberOfChannels (int *channelCount);
/**
* \name kvREMOTE_TYPExxx
* \anchor kvREMOTE_TYPExxx
*
* Remote type, returned when using \ref canCHANNELDATA_REMOTE_TYPE
* @{
*/
#define kvREMOTE_TYPE_NOT_REMOTE 0 ///<
#define kvREMOTE_TYPE_WLAN 1 ///<
#define kvREMOTE_TYPE_LAN 2 ///<
/** @} */
/**
* \name kvLOGGER_TYPE_xxx
* \anchor kvLOGGER_TYPE_xxx
*
* Logger type, returned when using \ref canCHANNELDATA_LOGGER_TYPE
* @{
*/
#define kvLOGGER_TYPE_NOT_A_LOGGER 0 ///<
#define kvLOGGER_TYPE_V1 1 ///<
#define kvLOGGER_TYPE_V2 2 ///<
/** @} */
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus canGetChannelData(int channel, int item, out object buffer);</b>
*
* \source_delphi <b>function canGetChannelData(channel, item: Integer; var buffer; bufsize: Cardinal): canStatus; </b>
* \source_end
*
* This function can be used to retrieve certain pieces of information about a channel.
*
* \note You must pass a channel number and not a channel handle.
*
* \param[in] channel The number of the channel you are interested in. Channel
* numbers are integers in the interval beginning at 0
* (zero) and ending at the value returned by
* \ref canGetNumberOfChannels() minus 1.
* \param[in] item This parameter specifies what data to obtain for the
* specified channel. The value is one of the constants
* \ref canCHANNELDATA_xxx.
* \param[out] buffer The address of a buffer which is to receive the data.
* \param[in] bufsize The size of the buffer to which the buffer parameter
* points.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref canGetNumberOfChannels()
*/
canStatus CANLIBAPI canGetChannelData (int channel,
int item,
void *buffer,
size_t bufsize);
/**
* \ingroup General
* \anchor canCHANNELDATA_xxx
* \name canCHANNELDATA_xxx
*
* These defines are used in \ref canGetChannelData().
*
* @{
*/
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the
* capabilities of the CAN controller; this is a combination of the \ref
* canCHANNEL_CAP_xxx flags.
*/
#define canCHANNELDATA_CHANNEL_CAP 1
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the
* capabilities of the CAN transceiver; this is a combination of the
* \ref canDRIVER_CAP_xxx flags.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
#define canCHANNELDATA_TRANS_CAP 2
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \note Currently not implemented
*/
#define canCHANNELDATA_CHANNEL_FLAGS 3 // available, etc
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the hardware
* type of the card. This value is any one of the \ref canHWTYPE_xxx
* constants.
*/
#define canCHANNELDATA_CARD_TYPE 4
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the card's
* number in the computer. Each card type is numbered separately. For
* example, the first LAPcan card in a machine will have number 0, the second
* LAPcan number 1, etc.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
#define canCHANNELDATA_CARD_NUMBER 5
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives the channel
* number on the card.
*/
#define canCHANNELDATA_CHAN_NO_ON_CARD 6
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 64-bit (8 bytes) area which receives the serial
* number of the card. If the card doesn't have a serial number, 0 is
* returned. The serial number is an 8-byte unsigned integer. Currently, no
* products are using all 8 bytes; at most 4 bytes are used.
*/
#define canCHANNELDATA_CARD_SERIAL_NO 7
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 64-bit (8 bytes) area which receives the serial
* number of the transceiver. The serial number is an 8-byte unsigned
* integer. If the transceiver doesn't have a serial number, 0 is returned.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
#define canCHANNELDATA_TRANS_SERIAL_NO 8
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 64-bit (8 bytes) area which receives the firmware
* revision number on the card. This number consists of four 16-bit words:
* the major revision, the minor revision, the release number and the build
* number, listed in order from the most significant to the least
* significant.
*/
#define canCHANNELDATA_CARD_FIRMWARE_REV 9
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 64-bit (8 bytes) area which receives the hardware
* revision number on the card. This number consists of four 16-bit words;
* the two most significant are always 0, and the two least significant are
* the major revision and the minor revision, listed in order from the most
* significant to the least significant.
*/
#define canCHANNELDATA_CARD_HARDWARE_REV 10
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 8-byte area which receives the UPC (EAN) number for
* the card. If there is no UPC number, the buffer is filled with zeros. The
* UPC (EAN) number is coded as a BCD string with the LSB first, so
* e.g. 733-0130-00122-0 is coded as 0x30001220 0x00073301.
*/
#define canCHANNELDATA_CARD_UPC_NO 11
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 8-byte area which receives the UPC (EAN) number for
* the transceiver. If there is no UPC number, the buffer is filled with
* zeros. The UPC (EAN) number is coded as a BCD string with the LSB first,
* so e.g. 733-0130-00122-0 is coded as 0x30001220 0x00073301.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
#define canCHANNELDATA_TRANS_UPC_NO 12
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to an area which receives a zero-terminated string with a
* clear-text name of the channel.
*
* \note Use of this item code is no longer recommended. The returned
* channel name doesn't contain the exact hardware type (it just contains
* the device family) and uses zero-based channel numbering, which is not
* user friendly. Instead, use e.g. \ref canCHANNELDATA_DEVDESCR_ASCII and
* \ref canCHANNELDATA_CHAN_NO_ON_CARD to build your own channel name.
*
*\win_start
* \sa \ref canCHANNELDATA_DEVNAME_ASCII
*\win_end
*/
#define canCHANNELDATA_CHANNEL_NAME 13
#if defined(CANLIB_DECLARE_ALL)
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to an array of 4 16-bit unsigned integers which receives
* the file version number of the second-level DLL driver file, i.e. the DLL
* that interfaces between CANLIB32.DLL and the driver proper.
*
* Contents depening on index:
*
* \li 0: 0
* \li 1: The build number
* \li 2: The minor revision number
* \li 3: The major revision number
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DLL_FILE_VERSION 14
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to an array of 4 16-bit unsigned integers which receives
* the product version number of the second-level DLL driver file, i.e. the
* DLL that interfaces between CANLIB32.DLL and the driver proper.
*
* Contents depening on index:
*
* \li 0: 0
* \li 1: 1
* \li 2: The minor revision number
* \li 3: The major revision number
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DLL_PRODUCT_VERSION 15
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives a number that
* identifies the second-level DLL driver file, i.e. the DLL that interfaces
* between CANLIB32.DLL and the driver proper.
*
* Values:
*
* \li 1: kvalapw.dll - used with CANLIB up to 2.29.
*
* \li 2: kvalapw2.dll - used with CANLIB from 3.0 and on.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DLL_FILETYPE 16
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives the CAN
* transceiver type of the specified channel. This value is one of the
* \ref canTRANSCEIVER_TYPE_xxx
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_TRANS_TYPE 17
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives an address
* indicating where the device is located on its underlying bus. The
* interpretation of this number is bus-specific. If the address is unknown
* or the bus driver does not support an address, the bus driver leaves this
* member at its default value of 0xFFFFFFFF.
*
* The following list describes the information certain bus drivers store in
* the Address field for their child devices:
*
* \li ISA: Does not supply an address. Defaults to 0xFFFFFFFF.
*
* \li PC Card (PCMCIA): The socket number (typically 0x00 or 0x40)
*
* \li PCI: The device number in the high word and the function number in the
* low word.
*
* \li USB: The port number.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DEVICE_PHYSICAL_POSITION 18
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives a number
* associated with the device that can be displayed in the user
* interface. This number is typically a user-perceived slot number, such as
* a number printed next to the slot on the board, or some other number that
* makes locating the physical device easier for the user. For buses with no
* such convention, or when the UI number is unknown, 0xFFFFFFFF is returned.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_UI_NUMBER 19
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which is set to 0, if the
* legacy time synchronization is not currently enabled for the specified
* channel, and 1, if the legacy time synchronization is currently enabled
* for the specified channel.
*
* Legacy time synchronization is a mechanism that will keep the PC and CAN
* channel clocks in sync. The synchronization is done in the driver, which
* periodically calculates the difference between the PC clock and the CAN
* device clock and compensates for the clock drift by recalculating the CAN
* message time stamps. You need to enable clock synchronization in the
* Control Panel using the Kvaser Hardware applet.
*
* \note Legacy time synchronization is implemented only on LAPcan and LAPcan
* II. It is not related to Kvaser MagiSync&tm; which is implemented in the
* high-end members of the Kvaser Leaf family. Kvaser MagiSync&tm; is always
* enabled and allows for much more accurate time synchronization.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*
*/
# define canCHANNELDATA_TIMESYNC_ENABLED 20
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to an array of four 16-bit unsigned integers which
* receives the file version number of the kernel-mode driver.
*
* Contents depening on index:
*
* \li 0: The build number
* \li 1: 0
* \li 2: The minor revision number
* \li 3: The major revision number
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DRIVER_FILE_VERSION 21
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to an array of four 16-bit unsigned integers which
* receives the product version number of the kernel-mode driver.
*
* Contents depening on index:
*
* \li 0: 0
* \li 1: 0
* \li 2: The minor revision number
* \li 3: The major revision number
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DRIVER_PRODUCT_VERSION 22
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the device manufacturer's name
* as a zero-terminated Unicode string.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_MFGNAME_UNICODE 23
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the device manufacturer's name
* as a zero-terminated ASCII string.
*/
# define canCHANNELDATA_MFGNAME_ASCII 24
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the product name of the device
* as a zero-terminated Unicode string.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DEVDESCR_UNICODE 25
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the product name of the device
* as a zero-terminated ASCII string.
*/
# define canCHANNELDATA_DEVDESCR_ASCII 26
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the name of the device
* driver (e.g. "kcans") as a zero-terminated ASCII string.
*
* \note The device driver names have no special meanings and may change
* from a release to another.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DRIVER_NAME 27
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the quality of
* the channel, where the quality is measured in percent of optimal quality.
*
* For WLAN, -90 dBm and -35 dBm are considered 0% and 100%, respectively.
*
* The quality is 100% for any directly connected channel (USB, PCI etc.).
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_CHANNEL_QUALITY 28
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer point to a 32-bit unsigned integer that receives the roundtrip
* time which is measured in milliseconds.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_ROUNDTRIP_TIME 29
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the
* \ref kvBUSTYPE_GROUP_xxx bus type.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_BUS_TYPE 30
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a CHAR array of at least 32 characters which receives
* the current device name as a \c NULL terminated ASCII string.
*
* If device name is not set or the device does not support this
* functionality, an error will be returned.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_DEVNAME_ASCII 31
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that contains the time in
* milliseconds since the last communication occured.
*
* For WLAN devices, this is the time since the last keep-alive message.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_TIME_SINCE_LAST_SEEN 32
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the
* current WLAN operational mode of the remote capable device;
* \ref canCHANNEL_OPMODE_xxx.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_REMOTE_OPERATIONAL_MODE 33
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the remote profile name
* of the device as a zero-terminated ASCII string.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_REMOTE_PROFILE_NAME 34
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the remote host name
* of the device as a zero-terminated ASCII string.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_REMOTE_HOST_NAME 35
/**
* \win_start
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a buffer which receives the mac address
* of the device as a zero-terminated ASCII string.
* \win_end
* \linux_start
* Not implemented.
* \linux_end
*/
# define canCHANNELDATA_REMOTE_MAC 36
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer which receives
* maximum bitrate of the device. Zero value means no limit on
* bitrate.
*/
# define canCHANNELDATA_MAX_BITRATE 37
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that receives the
* capabilities mask of the CAN channel. This mask specifies
* which capabilities corresponding device is guaranteed
* to support/not support at the moment, see \ref canCHANNEL_CAP_xxx
* for info about flags.
*/
# define canCHANNELDATA_CHANNEL_CAP_MASK 38
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that is 1 if
* the channel(device) is currently connected as a remote device. 0 if it is not
* currenty a remote device. */
# define canCHANNELDATA_IS_REMOTE 40
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that returns the type of remote connection.
* in mHz. See \ref kvREMOTE_TYPExxx for returned values.
*/
# define canCHANNELDATA_REMOTE_TYPE 41
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer points to a 32-bit unsigned integer that returns the logger type of the device.
* See \ref kvLOGGER_TYPE_xxx for returned values.
*/
# define canCHANNELDATA_LOGGER_TYPE 42
#endif
/**
* This define is used in \ref canGetChannelData(), \a buffer
* mentioned below refers to this functions argument.
*
* \a buffer is a user supplied byte array of length 'bufsize' (at
* least one byte long) to which the null terminated UTF-8 coded
* channel name will be placed.
*/
#define canCHANNELDATA_CUST_CHANNEL_NAME 39
/** @} */
/**
* \name canCHANNEL_IS_xxx
* \anchor canCHANNEL_IS_xxx
*
* These channelFlags are used in \ref canGetChannelData() and in conjunction with \ref
* canCHANNELDATA_CHANNEL_FLAGS.
* @{
*/
/** Used with \ref canCHANNELDATA_CHANNEL_FLAGS, indicates that the channel is
opened exclusively. */
#define canCHANNEL_IS_EXCLUSIVE 0x0001
/** Used with \ref canCHANNELDATA_CHANNEL_FLAGS, indicates that the channel is
opened. */
#define canCHANNEL_IS_OPEN 0x0002
/** Used with \ref canCHANNELDATA_CHANNEL_FLAGS, indicates that the channel is
* opened as CAN FD. */
#define canCHANNEL_IS_CANFD 0x0004
//#define canCHANNEL_IS_CANFD_NON_ISO 0x0008 Reserved for when needed
/** @} */
/**
* \name canHWTYPE_xxx
* \anchor canHWTYPE_xxx
*
* The following constants can be returned from \ref canGetChannelData(), using the
* \ref canCHANNELDATA_CARD_TYPE item code. They identify the hardware type for
* the channel specified in the call to \ref canGetChannelData().
*
* \note They indicate a hardware type, but not necessarily a specific
* product. For example, \ref canHWTYPE_LAPCAN is returned both for LAPcan and
* LAPcan II. (You can use \ref canGetChannelData() to obtain the UPC/EAN code for
* the device. This number uniquely identifies the product.)
*
* @{
*/
#define canHWTYPE_NONE 0 ///< Unknown or undefined
#define canHWTYPE_VIRTUAL 1 ///< The virtual CAN bus
#define canHWTYPE_LAPCAN 2 ///< LAPcan Family
#define canHWTYPE_CANPARI 3 ///< CANpari (obsolete).
#define canHWTYPE_PCCAN 8 ///< PCcan Family
#define canHWTYPE_PCICAN 9 ///< PCIcan Family
#define canHWTYPE_USBCAN 11 ///< USBcan (obsolete).
#define canHWTYPE_PCICAN_II 40 ///< PCIcan II family
#define canHWTYPE_USBCAN_II 42 ///< USBcan II, USBcan Rugged, Kvaser Memorator
#define canHWTYPE_SIMULATED 44 ///< Simulated CAN bus for Kvaser Creator (obsolete).
#define canHWTYPE_ACQUISITOR 46 ///< Kvaser Acquisitor (obsolete).
#define canHWTYPE_LEAF 48 ///< Kvaser Leaf Family
#define canHWTYPE_PC104_PLUS 50 ///< Kvaser PC104+
#define canHWTYPE_PCICANX_II 52 ///< Kvaser PCIcanx II
#define canHWTYPE_MEMORATOR_II 54 ///< Kvaser Memorator Professional family
#define canHWTYPE_MEMORATOR_PRO 54 ///< Kvaser Memorator Professional family
#define canHWTYPE_USBCAN_PRO 56 ///< Kvaser USBcan Professional
#define canHWTYPE_IRIS 58 ///< Obsolete name, use canHWTYPE_BLACKBIRD instead
#define canHWTYPE_BLACKBIRD 58 ///< Kvaser BlackBird
#define canHWTYPE_MEMORATOR_LIGHT 60 ///< Kvaser Memorator Light
#define canHWTYPE_MINIHYDRA 62 ///< Obsolete name, use canHWTYPE_EAGLE instead
#define canHWTYPE_EAGLE 62 ///< Kvaser Eagle family
#define canHWTYPE_BAGEL 64 ///< Obsolete name, use canHWTYPE_BLACKBIRD_V2 instead
#define canHWTYPE_BLACKBIRD_V2 64 ///< Kvaser BlackBird v2
#define canHWTYPE_MINIPCIE 66 ///< Kvaser Mini PCI Express
#define canHWTYPE_USBCAN_KLINE 68 ///< USBcan Pro HS/K-Line
#define canHWTYPE_ETHERCAN 70 ///< Kvaser Ethercan
#define canHWTYPE_USBCAN_LIGHT 72 ///< Kvaser USBcan Light
#define canHWTYPE_USBCAN_PRO2 74 ///< Kvaser USBcan Pro 5xHS and variants
#define canHWTYPE_PCIE_V2 76 ///< Kvaser PCIEcan 4xHS and variants
#define canHWTYPE_MEMORATOR_PRO2 78 ///< Kvaser Memorator Pro 5xHS and variants
#define canHWTYPE_LEAF2 80 ///< Kvaser Leaf Pro HS v2 and variants
#define canHWTYPE_MEMORATOR_V2 82 ///< Kvaser Memorator (2nd generation)
/** @} */
/**
* \name canCHANNEL_CAP_xxx
* \anchor canCHANNEL_CAP_xxx
*
* Channel capabilities.
*/
#define canCHANNEL_CAP_EXTENDED_CAN 0x00000001L ///< Can use extended identifiers
#define canCHANNEL_CAP_BUS_STATISTICS 0x00000002L ///< Can report busload etc
#define canCHANNEL_CAP_ERROR_COUNTERS 0x00000004L ///< Can return error counters
#define canCHANNEL_CAP_CAN_DIAGNOSTICS 0x00000008L ///< Can report CAN diagnostics
#define canCHANNEL_CAP_GENERATE_ERROR 0x00000010L ///< Can send error frames
#define canCHANNEL_CAP_GENERATE_OVERLOAD 0x00000020L ///< Can send CAN overload frame
#define canCHANNEL_CAP_TXREQUEST 0x00000040L ///< Can report when a CAN messsage transmission is initiated
#define canCHANNEL_CAP_TXACKNOWLEDGE 0x00000080L ///< Can report when a CAN messages has been transmitted
#define canCHANNEL_CAP_VIRTUAL 0x00010000L ///< Virtual CAN channel
#define canCHANNEL_CAP_SIMULATED 0x00020000L ///< Simulated CAN channel
#define canCHANNEL_CAP_RESERVED_1 0x00040000L ///< Obsolete, use canCHANNEL_CAP_REMOTE_ACCESS or \ref canGetChannelData() instead.
#define canCHANNEL_CAP_CAN_FD 0x00080000L ///< CAN-FD ISO compliant channel
#define canCHANNEL_CAP_CAN_FD_NONISO 0x00100000L ///< CAN-FD NON-ISO compliant channel
#define canCHANNEL_CAP_SILENT_MODE 0x00200000L ///< Channel supports Silent mode
#define canCHANNEL_CAP_SINGLE_SHOT 0x00400000L ///< Channel supports Single Shot messages
#define canCHANNEL_CAP_LOGGER 0x00800000L ///< Channel has logger capabilities.
#define canCHANNEL_CAP_REMOTE_ACCESS 0x01000000L ///< Channel has remote capabilities
#define canCHANNEL_CAP_SCRIPT 0x02000000L ///< Channel has script capabilities.
/**
* \name canCHANNEL_OPMODE_xxx
* \anchor canCHANNEL_OPMODE_xxx
*
* Current WLAN operational mode.
*
* @{
*/
#define canCHANNEL_OPMODE_NONE 1 ///< Not applicable, or unknown
#define canCHANNEL_OPMODE_INFRASTRUCTURE 2 ///< Infrastructure mode
#define canCHANNEL_OPMODE_RESERVED 3 ///< Reserved value, do not use
#define canCHANNEL_OPMODE_ADHOC 4 ///< Adhoc mode
/** @} */
/**
* \name canDRIVER_CAP_xxx
* \anchor canDRIVER_CAP_xxx
*
* Driver (transceiver) capabilities.
* @{
*/
/** Used with \ref canCHANNELDATA_TRANS_CAP */
#define canDRIVER_CAP_HIGHSPEED 0x00000001L
/** @} */
/**
* \ingroup General
* \name canIOCTL_xxx
* \anchor canIOCTL_xxx
*
* These defines are used in \ref canIoCtl().
*
* @{
*/
/**
* This define is used in \ref canIoCtl(), \a buf and \a buflen refers to this
* functions arguments.
*
* Tells CANLIB to "prefer" extended identifiers; that is, if you send a
* message with \ref canWrite() and don't specify \ref canMSG_EXT nor \ref canMSG_STD,
* \ref canMSG_EXT will be assumed. The contents of \a buf and \a buflen are
* ignored. \ref canRead() et al will set \ref canMSG_EXT and/or \ref canMSG_STD as usual
* and are not affected by this call.
*/
#define canIOCTL_PREFER_EXT 1
/**
* This define is used in \ref canIoCtl(), \a buf and \a buflen refers to this
* functions arguments.
*
* Tells CANLIB to "prefer" standard identifiers; that is, if you send a
* message with \ref canWrite() and don't specify \ref canMSG_EXT nor \ref canMSG_STD,
* \ref canMSG_STD will be assumed. The contents of \a buf and \a buflen are
* ignored. \ref canRead() et al will set \ref canMSG_EXT and/or \ref canMSG_STD as usual
* and are not affected by this call.
*/
#define canIOCTL_PREFER_STD 2
// 3,4 reserved.
/**
* The following canIOCTL code is deprecated.
* It is recommended to use \ref canIOCTL_RESET_OVERRUN_COUNT to reset overrun status
* (Note that CAN error counters are never updated on device and will be briefly
* changed back to their original values after this call)
*
* This define is used in \ref canIoCtl(), \a buf and \a buflen refers to this
* functions arguments.
*
* Tells CANLIB to clear the CAN error counters. The contents of \a buf and \a
* buflen are ignored. CAN error counters on device side are NOT updated.
*
*/
#define canIOCTL_CLEAR_ERROR_COUNTERS 5
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a DWORD which contains the desired time-stamp clock
* resolution in microseconds. The default value is 1000 microseconds, i.e.
* one millisecond.
*
* \note The accuracy of the clock isn't affected.
*/
#define canIOCTL_SET_TIMER_SCALE 6
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a DWORD which contains
*
* \li 0: to turn Transmit Acknowledges off.
* \li 1: to turn Transmit Acknowledges on.
* \li 2: to turn Transmit Acknowledges off, even for the driver's internal
* usage. This might enhance performance but will cause some other APIs to
* stop working (for example, the current size of the transmit queue can not
* be read when this mode is active.)
*
* The default value is 0, Transmit Acknowledge is off.
*/
#define canIOCTL_SET_TXACK 7
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points at a \c DWORD which receives the current RX queue level. The
* returned value is approximative (this is because not all hardware supports
* retrieving the queue levels. In that case a best-effort guess is
* returned. Also note that a device with embedded CPU will report its queue
* levels to the host computer after a short delay that depends on the bus
* traffic intensity, and consequently the value returned by the call to
* \ref canIoCtl() might be a few milliseconds old.)
*/
#define canIOCTL_GET_RX_BUFFER_LEVEL 8
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points at a \c DWORD which receives the current TX queue level. The
* returned value is approximative (this is because not all hardware supports
* retrieving the queue levels. In that case a best-effort guess is
* returned. Also note that a device with embedded CPU will report its queue
* levels to the host computer after a short delay that depends on the bus
* traffic intensity, and consequently the value returned by the call to
* \ref canIoCtl() might be a few milliseconds old.)
*/
#define canIOCTL_GET_TX_BUFFER_LEVEL 9
/**
* This define is used in \ref canIoCtl(), \a buf and \a buflen refers to this
* functions arguments.
*
* Discard the current contents of the RX queue. The values of \a buf and \a
* buflen are ignored.
*
* \note This is the same thing as calling \ref canFlushReceiveQueue()
*/
#define canIOCTL_FLUSH_RX_BUFFER 10
/**
* This define is used in \ref canIoCtl(), \a buf and \a buflen refers to this
* functions arguments.
*
* Discard the current contents of the TX queue. The values of \a buf and \a
* buflen are ignored.
*
* \note This is the same thing as calling \ref canFlushTransmitQueue().
*/
#define canIOCTL_FLUSH_TX_BUFFER 11
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD which contains the desired time-stamp clock
* resolution in microseconds. Note that the accuracy of the clock isn't
* affected. The default value is 1000 microseconds, i.e. one millisecond.
*/
#define canIOCTL_GET_TIMER_SCALE 12
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD which contains
*
* \li \c 0 to turn Transmit Requests off.
* \li \c 1 to turn Transmit Requests on.
*
* Default value is \c 0, Transmit Requests off.
*/
#define canIOCTL_SET_TXRQ 13
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points at a \c DWORD which receives a Windows Event handle which can
* be passed to the Win32 API \c WaitForSingleObject. The event is signaled
* when "something" (typically that a CAN message has been received or
* transmitted) happens in the driver.
*
* \note There is no more information available as to what happened when this
* call returns. The call may return on an "internal" event in CANLIB and your
* application must be prepared to handle this (i.e. go to sleep again.)
*
* \win_start
* \note If \ref canWaitForEvent() returns with success status (\ref canOK), you must call
* \ref canRead() repeatedly until it returns \ref canERR_NOMSG, before calling
* \ref canWaitForEvent() again. This will flush the driver's internal event queues.
* Failure to call \ref canRead() can cause \ref canWaitForEvent() to get stuck in a state
* where it always sleeps for the specified timeout and then returns with
* \ref canERR_TIMEOUT.
*
* \sa \ref canWaitForEvent()
* \win_end
*
* \note You must not set, reset, nor close this handle. Waiting on it is
* the only supported operation.
*/
#define canIOCTL_GET_EVENTHANDLE 14
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \note Not yet implemented.
*/
#define canIOCTL_SET_BYPASS_MODE 15
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
#define canIOCTL_SET_WAKEUP 16
#if defined(CANLIB_DECLARE_ALL)
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a HANDLE which receives the Windows handle related to the
* CANLIB handle.
*/
# define canIOCTL_GET_DRIVERHANDLE 17
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
# define canIOCTL_MAP_RXQUEUE 18
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
# define canIOCTL_GET_WAKEUP 19
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a unsigned char which contains
*
* \li \c 0 to turn access error reporting off, and
* \li \c 1 to turn access error reporting on.
*
* Default value is \c 0, access error reporting off.
*/
# define canIOCTL_SET_REPORT_ACCESS_ERRORS 20
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a unsigned char which receives the current setting of the access
* error reporting (0 or 1.)
*/
# define canIOCTL_GET_REPORT_ACCESS_ERRORS 21
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Connects the handle to the virtual bus number (0..31) which the \a buf
* points to.
*/
# define canIOCTL_CONNECT_TO_VIRTUAL_BUS 22
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Disonnects the handle from the virtual bus number (0..31) which the \a buf
* points to.
*/
# define canIOCTL_DISCONNECT_FROM_VIRTUAL_BUS 23
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \ref canUserIoPortData struct that contains a port number
* and a port value to set. This is used by special hardware only.
*/
# define canIOCTL_SET_USER_IOPORT 24
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \ref canUserIoPortData struct that contains a port
* number. After the call, the struct will contain the current value of the
* I/O port. This is used by special hardware only.
*/
# define canIOCTL_GET_USER_IOPORT 25
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
# define canIOCTL_SET_BUFFER_WRAPAROUND_MODE 26
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Use this function code to set the size of the receive buffer for a
* specific handle. \a buf points to an unsigned integer which contains the
* new size (number of messages) of the receive buffer.
*
* \note The receive buffer consumes system nonpaged pool memory, which is a
* limited resource. Do not increase the receive buffer size unless you
* have good reasons to do so.
*
* \note You can't use this function code when the channel is on bus.
*/
# define canIOCTL_SET_RX_QUEUE_SIZE 27
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
# define canIOCTL_SET_USB_THROTTLE 28
/**
* This define is used in \ref canIoCtl().
*
* This is only intended for internal use.
*/
# define canIOCTL_GET_USB_THROTTLE 29
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a DWORD. If the value is zero, the CAN clock will not be
* reset at buson for the handle. Otherwise, the CAN clock will be reset at
* buson.
*
* Default value is \c 1, the CAN clock will be reset at buson.
*/
# define canIOCTL_SET_BUSON_TIME_AUTO_RESET 30
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Returns the state of the Transmit Acknowledge as a DWORD in \a buf:
*
* \li 0: Transmit Acknowledges is turned off.
* \li 1: Transmit Acknowledges is turned on.
* \li 2: Transmit Acknowledges is turned off, even for the driver's internal
* usage.
*/
# define canIOCTL_GET_TXACK 31
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to an unsigned byte. If the value is zero, the local transmit
* echo is turned off for the handle. Otherwise, local transmit echo is turned
* on.
*
* Local transmit echo is turned on by default on all handles. This means
* that if two handles are open on the same channel, and a message is
* transmitted on the first handle, it will be received as a normal message
* on the second handle. Use the \ref canIOCTL_SET_LOCAL_TXECHO function code to
* turn this function off, if it is not desired on a certain handle.
*/
# define canIOCTL_SET_LOCAL_TXECHO 32
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to an unsigned byte. If the value is zero, the reporting of
* error frames is turned off for the handle. Otherwise, error frame reporting
* is turned on.
*
* Default value is \c 1, error frame reporting is turned on.
*/
# define canIOCTL_SET_ERROR_FRAMES_REPORTING 33
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a 32-bit unsigned integer that receives the quality of
* the channel, where the quality is measured in percent of optimal quality.
*
* For a WLAN, -90 dBm and -35 dBm are considered 0% and 100%, respectively.
*
* The quality is 100% for any directly connected channel (USB, PCI etc.).
*/
# define canIOCTL_GET_CHANNEL_QUALITY 34
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD that contains the roundtrip time measured in
* milliseconds.
*/
# define canIOCTL_GET_ROUNDTRIP_TIME 35
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD that contains the \ref kvBUSTYPE_GROUP_xxx bus type.
*/
# define canIOCTL_GET_BUS_TYPE 36
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a CHAR array of at least 32 characters which receives the
* current device name as a \c NULL terminated ASCII string.
*
* If device name is not set or the device does not support this
* functionality, an error will be returned.
*/
# define canIOCTL_GET_DEVNAME_ASCII 37
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD that contains the time in milliseconds since the last
* communication occured.
*
* For WLAN devices, this is the time since the last keep-alive message.
*/
# define canIOCTL_GET_TIME_SINCE_LAST_SEEN 38
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Obtain the time reference list for MagiSync devices.
*
* \a buf points to an array of pairs of 64-bit ints, one of which
* will contain the reference number and the other one the timestamp
* in nanoseconds.
*
* \note This function is subject to change in future releases and is
* not supported by Kvaser.
*/
# define canIOCTL_GET_TREF_LIST 39
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* \a buf points to a \c DWORD that contains the number of microseconds
* the minimum CAN message transmit interval should be set to, or 0xffffffff
* to fetch the current setting.
* The minimum interval can not be set to more than one second.
*
* When a CAN channel goes bus on, the minimum interval is set to zero.
* I.e. CAN transmissions happen at the maximum speed the device is capable of.
*
* If the device does not support this functionality, or if an invalid
* minimum interval is requested, an error will be returned.
*
* \note The minimum CAN messages transmit interval applies to the physical CAN
* channel. It will thus affect all messages transmitted, even those sent
* using other CANlib handles to the same physical channel. The interval
* is defined as the time from the successful completion of one transmit
* to the beginning of the next one.
*/
# define canIOCTL_TX_INTERVAL 40
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* Some hardware have bitrate limits, which must be met when using any of \a canSetBusParams(),
* \a canSetBusParamsC200(), \a canGetBusParams() functions
* which can be overriden with this IOCTL.
* \a buf points to a \c long value that contains a user defined bitrate.
* A value of 0 means that the device should use its own default bitrate limit.
*/
# define canIOCTL_SET_BRLIMIT 43
/**
* Obsolete, use \ref canIOCTL_SET_THROTTLE_SCALED instead
*/
# define canIOCTL_SET_USB_THROTTLE_SCALED 41
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* This ioctl can be used to set the responsitivity of some devices.
* \a buf points to a \c DWORD that should contain a value between 0 and 100.
* A value of 0 means that the device should be very responsive and a value
* of 100 means that the device generates less cpu load or requires more bandwidth.
* Note that not all
* devices support this. Some hardware will accept this command but neglect it.
* This can be found out by reading the scaled throttle.
*/
# define canIOCTL_SET_THROTTLE_SCALED 41
/**
* Obsolete, use \ref canIOCTL_GET_THROTTLE_SCALED instead
*/
# define canIOCTL_GET_USB_THROTTLE_SCALED 42
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* This ioctl can be used to set the responsitivity of some devices.
* \a buf points to a \c DWORD that should contain a value between 0 and 100.
* A value of 0 means that the device should be very responsive and a value
* of 100 means that the device generates less cpu load or requires more bandwidth.
* Note that not all
* devices support this. Some hardware will accept this command but neglect it.
* This can be found out by reading the scaled throttle.
*/
# define canIOCTL_GET_THROTTLE_SCALED 42
/**
* This define is used in \ref canIoCtl(), \a buf mentioned below refers to this
* functions argument.
*
* This ioctl resets overrun count and flags, \sa \ref canReadStatus \sa \ref canGetBusStatistics
*/
# define canIOCTL_RESET_OVERRUN_COUNT 44
#endif
/** @} */
#if defined(CANLIB_DECLARE_ALL)
/** Used in \ref canIOCTL_SET_USER_IOPORT and \ref canIOCTL_GET_USER_IOPORT. */
typedef struct {
unsigned int portNo; ///< Port number used in e.g. \ref canIOCTL_SET_USER_IOPORT
unsigned int portValue; ///< Port value used in e.g. \ref canIOCTL_SET_USER_IOPORT
} canUserIoPortData;
#endif
#if defined(CANLIB_DECLARE_ALL)
/**
* \ingroup Notification and Waiting
*
* \source_cs <b>static Canlib.canStatus canWaitForEvent(int hnd, ulong timeout);</b>
*
* \source_delphi <b>function canWaitForEvent(hnd: canHandle; timeout: Cardinal): canStatus; </b>
* \source_end
*
* Waits for an event (of any kind) to happen at the specified CAN circuit, or
* a timeout to occur. An event in this context means for example the arrival
* of a CAN message or a CAN bus status change, but it can also be an event
* internal to the driver.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] timeout The number of milliseconds to wait before the call
* returns, if no event occurs. 0xFFFFFFFF gives an
* infinite timeout.
*
* \return \ref canOK (zero) if an event happened during the specified time
* period.
* \return \ref canERR_TIMEOUT (negative) if nothing happened during the specified
* time period.
* \return \ref canERR_xxx (negative) if failure.
*
* \sa \ref page_code_snippets_examples,
* \ref page_user_guide_send_recv_asynch_not
* \sa \ref canRead()
*/
canStatus CANLIBAPI canWaitForEvent (const CanHandle hnd, DWORD timeout);
#endif
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetBusParamsC200(int hnd, byte btr0, byte btr1);</b>
*
* \source_delphi <b>function canSetBusParamsC200(hnd: canHandle; btr0, btr1: byte): canStatus; </b>
* \source_end
*
* This function sets the bus timing parameters using the same
* convention as the 82c200 CAN controller (which is the same as many
* other CAN controllers, for example, the 82527.)
*
* To calculate the bit timing parameters, you can use the bit timing
* calculator that is included with CANLIB SDK. Look in the BIN directory.
*
* 82c200 Bit Timing
*
* \li \a btr0 [b7..b6]: SJW - 1
* \li \a btr0 [b5..b0]: Prescaler -1
* \li \a btr1 [b7]: \c 1: 3 samples, \c 0: 1 samples
* \li \a btr1 [b6..b4]: tseg2 - 1
* \li \a btr1 [b3..b0]: tseg1 - 2
*
* \note CANLIB will always behave as if the clock frequency is 16 MHz. It does
* not matter if the device has a different physical clock, since this will be
* compensated for by the driver.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] btr0 The desired bit timing, formatted as the contents of the
* BTR0 register in the 82c200.
* \param[in] btr1 The desired bit timing, formatted as the contents of the
* BTR1 register in the 82c200.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*
* \sa \ref page_code_snippets_bit_rate, \ref page_user_guide_misc_bitrate
* \sa \ref canSetBusParams()
*/
canStatus CANLIBAPI canSetBusParamsC200 (const CanHandle hnd, unsigned char btr0, unsigned char btr1);
#if defined(CANLIB_DECLARE_ALL)
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetDriverMode(int hnd, int lineMode, int resNet);</b>
*
* \source_delphi <b>function canSetDriverMode(hnd: canHandle; lineMode, resNet: Integer): canStatus; </b>
* \source_end
*
* This function sets the current CAN bus driver mode. This is
* typically a mode like sleep, wakeup, standby, fast mode, etc. The
* different modes are almost always hardware dependent and requires
* special DRVcan cables. As an example, the DRVcan S implements J2411
* compliant single-wire CAN and supports four line modes, namely
* Normal, Sleep, Fast and Wakeup.
*
* Standard ISO 11898 CAN do not support any of these bus driver modes.
*
* \note The bus driver mode is typically used to control things like one- or
* two-wire mode, sleep mode, and so on. It requires special support in the CAN
* driver circuit.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] lineMode An int which defines the line mode,
* \ref canTRANSCEIVER_LINEMODE_xxx.
* \param[in] resNet An int which defines the resnet mode. Set this parameter to
* \ref canTRANSCEIVER_RESNET_NA unless you have good reasons to set it
* to something else.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \win_start
* \sa \ref canGetDriverMode()
* \win_end
*
* \linux_start
* Not implemented.
* \linux_end
*/
canStatus CANLIBAPI canSetDriverMode (const CanHandle hnd, int lineMode, int resNet);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetDriverMode(int hnd, out int lineMode, out int resNet);</b>
*
* \source_delphi <b>function canGetDriverMode(hnd: canHandle; var lineMode: Integer; var resNet: Integer): canStatus; </b>
* \source_end
*
* This function retrieves the current CAN bus driver mode. This is typically a
* mode like sleep, wakeup, standby, fast mode, etc. The different modes are
* almost always hardware dependent and requires special DRVcan cables. As an
* example, the DRVcan S implements J2411 compliant single-wire CAN and
* supports four line modes, namely Normal, Sleep, Fast and Wakeup.
*
* Standard ISO 11898 CAN do not support any of these bus driver modes.
*
* \note The bus driver mode is typically used to control things like one- or
* two-wire mode, sleep mode, and so on. It requires special support in the CAN
* driver circuit.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[out] lineMode A pointer to an int which receives the current line
* mode (\ref canTRANSCEIVER_LINEMODE_xxx).
* \param[out] resNet A pointer to an int which receives the current resnet
* mode. This value is usually
* \ref canTRANSCEIVER_RESNET_NA except for special DRVcan
* cables.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \win_start
* \sa \ref canSetDriverMode()
* \win_end
*
* \linux_start
* Not implemented.
* \linux_end
*
*/
canStatus CANLIBAPI canGetDriverMode (const CanHandle hnd, int *lineMode, int *resNet);
#endif
/**
* \name canVERSION_CANLIB32_xxx
* \anchor canVERSION_CANLIB32_xxx
* @{
* Item codes for canGetVersionEx().
*/
/**
* This define is used in \ref canGetVersionEx() and controls which version number
* that returned.
*
* Version number of the canlib32.dll file coded as an unsigned 16-bit word
* with the major version number in the upper byte and the minor version
* number in the lower byte. This version number is not related to the
* product version number of the whole CANLIB. For example, canlib32.dll
* belonging to CANLIB 2.27 would return 0x305.
*/
#define canVERSION_CANLIB32_VERSION 0
/**
* This define is used in \ref canGetVersionEx() and controls what type of version
* number that is returned.
*
* Product version number of canlib32.dll coded as an unsigned 16-bit word
* with the major version number in the upper byte and the minor version
* number in the lower byte. The product version number corresponds to the
* version number of the whole CANLIB. For example, canlib32.dll belonging to
* CANLIB 2.27 would return 0x21B.
*/
#define canVERSION_CANLIB32_PRODVER 1
/**
* This define is used in \ref canGetVersionEx() and controls what type of version
* number that is returned.
*
* Product version number of canlib32.dll coded as an unsigned 32-bit word
* where the bytes contain (in order from the most significant to the least
* significant byte) 0, major version number, minor version number, and the
* minor version letter. (The minor version letter is the ASCII code for the
* letter, or 0 (zero) if no letter). For example, CANLIB 3.8 would return
* 0x00030800 and CANLIB 3.8a would return 0x00030861.
*/
#define canVERSION_CANLIB32_PRODVER32 2
/**
* This define is used in \ref canGetVersionEx() and controls what type of version
* number that is returned.
*
* Returns 1 if the present version is a beta (preview) release, or 0 if it
* is an official release.
*/
#define canVERSION_CANLIB32_BETA 3
/** @} */
#if defined(CANLIB_DECLARE_ALL)
/**
* \ingroup Information Services
*
* \source_cs <b>static int canGetVersionEx(int itemCode);</b>
*
* \source_delphi <b>function canGetVersionEx(itemCode: Cardinal): Cardinal; </b>
* \source_end
*
* This function returns various version numbers from the driver routines.
*
* \param[in] itemCode Specifies which version number to retrieve. See
* \ref canVERSION_CANLIB32_xxx
*
* \return The return value is desired version number.
*
* \sa \ref page_user_guide_build_driver_version
*/
unsigned int CANLIBAPI canGetVersionEx (unsigned int itemCode);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamGetCount();</b>
*
* \source_delphi <b>function canParamGetCount(): canStatus; </b>
* \source_end
*
* This function returns the number of entries in the table of named
* channels.
*
* \return The number of channels (zero or positive)
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
*
*/
canStatus CANLIBAPI canParamGetCount (void);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamCommitChanges();</b>
*
* \source_delphi <b>function canParamCommitChanges(): canStatus; </b>
* \source_end
*
* This function writes the current set of named parameters to the
* Registry. Previous entries are erased.
*
* The named parameters are stored in the
* \c HKEY_LOCAL_MACHINE\\SOFTWARE\\KVASER \c AB\\CANLIB32\\PredefinedBitrates
* key in the Registry.
*
* \note You must have Administrator's rights to write to the Registry.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
*
*/
canStatus CANLIBAPI canParamCommitChanges (void);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamDeleteEntry(int index);</b>
*
* \source_delphi <b>function canParamDeleteEntry(index: Integer): canStatus; </b>
* \source_end
*
* This function deletes the entry in the table of named parameter settings
* with the given index. The entries below (i.e. with higher indices) the
* deleted entry are moved up one step in the table.
*
* The named parameters are stored in the
* \c HKEY_LOCAL_MACHINE\\SOFTWARE\\KVASER \c AB\\CANLIB32\\PredefinedBitrates
* key in the Registry.
*
* \param[in] index The index of the entry to delete.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCreateNewEntry(), \ref canParamCommitChanges()
*/
canStatus CANLIBAPI canParamDeleteEntry (int index);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static int canParamCreateNewEntry();</b>
*
* \source_delphi <b>function canParamCreateNewEntry(): canStatus; </b>
* \source_end
*
* This function creates a new entry in the table of named parameter
* settings.
*
* The named parameters are stored in the
* \c HKEY_LOCAL_MACHINE\\SOFTWARE\\KVASER \c AB\\CANLIB32\\PredefinedBitrates
* key in the Registry.
*
* \return The index of the created entry (zero or positive) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamDeleteEntry()
*
*/
canStatus CANLIBAPI canParamCreateNewEntry (void);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamSwapEntries(int index1, int index2);</b>
*
* \source_delphi <b>function canParamSwapEntries(index1, index2: Integer): canStatus; </b>
* \source_end
*
* This function swaps two entries in the list of named
* parameters.
*
* The named parameters are stored in the
* \c HKEY_LOCAL_MACHINE\\SOFTWARE\\KVASER \c AB\\CANLIB32\\PredefinedBitrates
* key in the Registry.
*
* \param[in] index1 The first of the two entries that are to be swapped in the
* named parameters list.
* \param[in] index2 The second of the two entries that are to be swapped in the
* named parameters list.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges()
*
*/
canStatus CANLIBAPI canParamSwapEntries (int index1, int index2);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamGetName(int index, ref string str_buf);</b>
*
* \source_delphi <b>function canParamGetName(index: Integer; buffer: PChar; maxlen: Integer): canStatus; </b>
* \source_end
*
* This function returns the name of a given entry in the list of
* named parameters.
*
* The named parameters are stored in the
* \c HKEY_LOCAL_MACHINE\\SOFTWARE\\KVASER \c AB\\CANLIB32\\PredefinedBitrates
* key in the Registry.
*
* \param[in] index The index of the entry in the named parameters list, whose
* name is to be returned.
* \param[out] buffer A pointer to a buffer that is to receive a
* \c NULL terminated string which contains the name. The
* buffer is allocated and deallocated by the user.
* \param[in] maxlen The length of the buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamSetName(), \ref canParamCommitChanges()
*/
canStatus CANLIBAPI canParamGetName (int index, char *buffer, int maxlen);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static int canParamGetChannelNumber(int index);</b>
*
* \source_delphi <b>function canParamGetChannelNumber(index: Integer): canStatus; </b>
* \source_end
*
* This function returns the channel number of the entry with the
* given index in the table of named parameter settings.
*
* \param[in] index The index of the entry in the table of named parameter
* settings.
*
* \return The channel number of the entry in question (zero or positive)
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamGetChannelNumber()
*/
canStatus CANLIBAPI canParamGetChannelNumber (int index);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamGetBusParams(int index, out int bitrate, out int tseg1, out int tseg2, out int sjw, out int noSamp);</b>
*
* \source_delphi <b>function canParamGetBusParams(index: Integer; var bitrate: LongInt; var tseg1: Cardinal; var tseg2: Cardinal; var sjw: Cardinal; var nosamp: Cardinal): canStatus; </b>
* \source_end
*
* This function retrieves the bus parameters associated with the
* entry with the given index in the table of named parameter
* settings.
*
* \param[in] index The index of the entry in the table of named parameter
* settings.
* \param[out] bitrate Bit rate (bits per second).
* \param[out] tseg1 Time segment 1, that is, the number of quanta from (but
* not including) the Sync Segment to the sampling point.
* \param[out] tseg2 Time segment 2, that is, the number of quanta from the
* sampling point to the end of the bit.
* \param[out] sjw The Synchronization Jump Width.
* \param[out] noSamp The number of sampling points; can be 1 or 3.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamSetBusParams()
*/
canStatus CANLIBAPI canParamGetBusParams (int index,
long* bitrate,
unsigned int *tseg1,
unsigned int *tseg2,
unsigned int *sjw,
unsigned int *noSamp);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamSetName(int index, string str_buf);</b>
*
* \source_delphi <b>function canParamSetName(index: Integer; buffer: PChar): canStatus; </b>
* \source_end
*
* This function sets or changes the name of a named parameter.
*
* \param[in] index The index of the named parameter whose name is to be
* changed or set.
* \param[out] buffer A pointer to a \c NULL terminated string that contains the
* new name. If the string is longer than the maximum
* allowed name length, it is truncated.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamGetName()
*/
canStatus CANLIBAPI canParamSetName (int index, const char *buffer);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamSetChannelNumber(int index, int channel);</b>
*
* \source_delphi <b>function canParamSetChannelNumber(index, channel: Integer): canStatus; </b>
* \source_end
*
* This function sets the channel number for a specified entry in the list of
* named parameters. Channels are numbered from 0 and up.
*
* \param[in] index The index of the entry in the named parameter list whose
* channel number is to be set.
* \param[in] channel The channel number.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamGetChannelNumber()
*/
canStatus CANLIBAPI canParamSetChannelNumber (int index, int channel);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamSetBusParams(int index, int bitrate, int tseg1, int tseg2, int sjw, int noSamp);</b>
*
* \source_delphi <b>function canParamSetBusParams(index: Integer; bitrate: longint; tseq1, tseq2, sjw, noSamp: Cardinal): canStatus; </b>
* \source_end
*
* This function sets or changes the bus parameters for a given entry in the
* list of named parameters.
*
* \note The bus parameters are not checked for validity.
*
* \param[in] index The index of the entry in the named parameter list whose
* parameters are to be set or changed.
* \param[in] bitrate Bit rate (measured in bits per second); or one of the
* predefined constants \ref canBITRATE_xxx.
* \param[in] tseg1 Time segment 1, that is, the number of quanta from (but not
* including) the Sync Segment to the sampling point.
* \param[in] tseg2 Time segment 2, that is, the number of quanta from the
* sampling point to the end of the bit.
* \param[in] sjw The Synchronization Jump Width.
* \param[in] noSamp The number of sampling points; can be 1 or 3.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges(), \ref canParamGetBusParams()
*/
canStatus CANLIBAPI canParamSetBusParams (int index,
long bitrate,
unsigned int tseg1,
unsigned int tseg2,
unsigned int sjw,
unsigned int noSamp);
/**
* \ingroup NamedParameterSettings
*
* \source_cs <b>static Canlib.canStatus canParamFindByName(string str_name);</b>
*
* \source_delphi <b>function canParamFindByName(const Name: PChar):canStatus; </b>
* \source_end
*
* This function returns the index of the parameter setting with the
* given name.
*
* \param[in] name A pointer to a string containing the name of the setting.
*
* \return The index of the setting (zero or positive) if success.
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_misc_named_parameters
* \sa \ref canParamCommitChanges()
*/
canStatus CANLIBAPI canParamFindByName (const char *name);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufFreeAll(int handle);</b>
*
* \source_delphi <b>function canObjBufFreeAll(handle: canHandle): canStatus; </b>
* \source_end
*
* Deallocates all object buffers on the specified handle. The
* buffers cannot be referenced after this operation.
*
* \param[in] hnd An open handle to a CAN circuit.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
* \sa \ref canObjBufFree(), \ref canObjBufAllocate()
*/
canStatus CANLIBAPI canObjBufFreeAll (const CanHandle hnd);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufAllocate(int handle, int type);</b>
*
* \source_delphi <b>function canObjBufAllocate(handle: canHandle; tp: Integer): canStatus; </b>
* \source_end
*
* Allocates an object buffer associated with a handle to a CAN
* circuit.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] type The type of the buffer. Must be one of \ref canOBJBUF_TYPE_xxx
*
* \return A buffer index (zero or positive) if success.
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
* \sa \ref canObjBufFree(), \ref canObjBufFreeAll()
*/
canStatus CANLIBAPI canObjBufAllocate (const CanHandle hnd, int type);
/**
* \name canOBJBUF_TYPE_xxx
* \anchor canOBJBUF_TYPE_xxx
*
* Used in \ref canObjBufAllocate().
*
* @{
*/
#define canOBJBUF_TYPE_AUTO_RESPONSE 0x01 ///< The buffer is an auto-response buffer.
#define canOBJBUF_TYPE_PERIODIC_TX 0x02 ///< The buffer is an auto-transmit buffer.
/** @} */
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufFree(int handle, int idx);</b>
*
* \source_delphi <b>function canObjBufFree(handle: canHandle; idx: Integer): canStatus; </b>
* \source_end
*
* Deallocates the object buffer with the specified index. The buffer
* can not be referenced after this operation.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The object buffer to deallocate.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
* \sa \ref canObjBufFreeAll(), \ref canObjBufAllocate(),
*/
canStatus CANLIBAPI canObjBufFree (const CanHandle hnd, int idx);
// Writes CAN data to the object buffer with the specified index.
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufWrite(int handle, int idx, int id, byte[] msg, int dlc, int flags);</b>
*
* \source_delphi <b>function canObjBufWrite(handle: canHandle; idx, id: Integer; var msg; dlc, flags: cardinal): canStatus; </b>
* \source_end
*
* Defines the contents of a specific object buffer.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The index of the object buffer whose contents is to be
* defined.
* \param[in] id The CAN identifier of the message.
* \param[in] msg Points to the contents of the message.
* \param[in] dlc The length of the message in bytes.<br>
For Classic CAN dlc can be at most 8, unless \ref canOPEN_ACCEPT_LARGE_DLC is used.<br>
For CAN FD dlc can be one of the following 0-8, 12, 16, 20, 24, 32, 48, 64.
* \param[in] flags Message flags; a combination of the \ref canMSG_xxx flags.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufWrite (const CanHandle hnd,
int idx,
int id,
void* msg,
unsigned int dlc,
unsigned int flags);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufSetFilter(int handle, int idx, int code, int mask);</b>
*
* \source_delphi <b>function canObjBufSetFilter(handle: canHandle; idx: Integer; code, mask: Cardinal): canStatus; </b>
* \source_end
*
* Defines a message reception filter on the specified object buffer.
* Messages not matching the filter are discarded.
*
* \note For an auto response buffer, set the code and mask that together define
* the identifier(s) that trigger(s) the automatic response.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The index of the object buffer on which the filter is to be
* set.
* \param[in] code The acceptance code in the filter.
* \param[in] mask The acceptance mask in the filter.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \win_start \ref page_user_guide_misc_code_and_mask, \win_end
* \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufSetFilter (const CanHandle hnd,
int idx,
unsigned int code,
unsigned int mask);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufSetFlags(int handle, int idx, int flags);</b>
*
* \source_delphi <b>function canObjBufSetFlags(handle: canHandle; idx: Integer; flags: Cardinal): canStatus; </b>
* \source_end
*
* Sets object buffer flags on a specified object buffer.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The buffer on which the flags are to be set.
* \param[in] flags Specifies a combination of zero or more of the
* \ref canOBJBUF_AUTO_RESPONSE_xxx flag values
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufSetFlags (const CanHandle hnd,
int idx,
unsigned int flags);
/**
* \name canOBJBUF_AUTO_RESPONSE_xxx
* \anchor canOBJBUF_AUTO_RESPONSE_xxx
*
* These defines are used in \ref canObjBufSetFlags().
*
* @{
*/
/**
* This define is used in \ref canObjBufSetFlags().
*
* For auto-response buffers only. When this flag is in effect, the buffer
* will auto-respond to remote requests only. If this flag is not in effect,
* the buffer will auto-respond to both remote requests and ordinary data
* frames.
*
*/
# define canOBJBUF_AUTO_RESPONSE_RTR_ONLY 0x01
/** @} */
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufSetPeriod(int hnd, int idx, int period);</b>
*
* \source_delphi <b>function canObjBufSetPeriod(handle: canHandle; idx: Integer; period: Cardinal): canStatus; </b>
* \source_end
*
* The \ref canObjBufSetPeriod function sets the transmission period for an auto
* transmission object buffer.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] idx The index of a CAN object buffer.
* \param[in] period The transmission interval, in microseconds.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufSetPeriod (const CanHandle hnd,
int idx,
unsigned int period);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufSetMsgCount(int hnd, int idx, int count);</b>
*
* \source_delphi <b>function canObjBufSetMsgCount(handle: canHandle; idx: Integer; count: Cardinal): canStatus; </b>
* \source_end
*
* The \ref canObjBufSetMsgCount function sets the message count for an auto
* transmit object buffer.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] idx The index of a CAN object buffer.
* \param[in] count The message count.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufSetMsgCount (const CanHandle hnd,
int idx,
unsigned int count);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufEnable(int handle, int idx);</b>
*
* \source_delphi <b>function canObjBufEnable(handle: canHandle; idx: Integer): canStatus; </b>
* \source_end
*
* Enables the object buffer with the specified index.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The index of the object buffer to enable.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
* \sa \ref canObjBufDisable()
*/
canStatus CANLIBAPI canObjBufEnable (const CanHandle hnd, int idx);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufDisable(int handle, int idx);</b>
*
* \source_delphi <b>function canObjBufDisable(handle: canHandle; idx: Integer): canStatus; </b>
* \source_end
*
* Disables the object buffer with the specified index.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] idx The index of the buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
* \sa \ref canObjBufEnable()
*/
canStatus CANLIBAPI canObjBufDisable (const CanHandle hnd, int idx);
/**
* \ingroup ObjectBuffers
*
* \source_cs <b>static Canlib.canStatus canObjBufSendBurst(int hnd, int idx, int burstlen);</b>
*
* \source_delphi <b>function canObjBufSendBurst(handle: canHandle; idx: Integer; burstLen: Cardinal): canStatus; </b>
* \source_end
*
* The canObjBufSendBurst function sends a burst of CAN messages. You have to
* set up an object buffer first with the message to send. The messages will be
* sent as fast as possible from the hardware.
*
* This function is inteneded for certain diagnostic applications.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] idx The index of a CAN object buffer.
* \param[in] burstlen The number of messages to send.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_user_guide_send_recv_obj_buf
*/
canStatus CANLIBAPI canObjBufSendBurst (const CanHandle hnd,
int idx,
unsigned int burstlen);
/**
* \name canVERSION_xxx
* \anchor canVERSION_xxx
*
* These defines are used in \ref canProbeVersion().
*
* @{
*/
/**
* This define is used in \ref canProbeVersion(), \a major and \a minor refer to
* this functions arguments.
*
* Require that exactly the version specified by \a major and \a minor be
* present. Earlier and later versions are not accepted. This flag does not
* affect the acceptance of beta versions.
*/
#define canVERSION_DONT_ACCEPT_LATER 0x01
/**
* This define is used in \ref canProbeVersion(), \a major and \a minor refer to
* this functions arguments.
*
* Return FALSE if a beta version (preview version) of CANLIB is installed,
* regardless of its version number.
*/
#define canVERSION_DONT_ACCEPT_BETAS 0x02
/** @} */
/**
* \ingroup General
*
* \source_cs <b>static bool canProbeVersion(int hnd, int major, int minor, int oem_id, int flags);</b>
*
* \source_delphi <b>function canProbeVersion(handle: canHandle; major, minor, oem_id: Integer; flags: Cardinal): Boolean; </b>
* \source_end
*
* This function checks whether a specific version of CANLIB is installed on
* the system.
*
* The default behaviour of \ref canProbeVersion is to accept
*
* \li the version specified by \a major and \a minor, and
* \li any later version, and
* \li all beta versions.
*
* You get the default behaviour by setting \a flags to 0. Use any
* combination of the \ref canVERSION_xxx flags to modify the behaviour.
*
* \note Different handles might have different driver versions installed. This
* should not normally be the case but it might happen anyway. You should check
* the version for each handle you open, e.g. directly after calling
* \ref canOpenChannel().
*
* \param[in] hnd A handle to an open circuit.
* \param[in] major The major version number of the version to test for.
* \param[in] minor The minor version number of the version to test for.
* \param[in] oem_id Reserved, must be zero.
* \param[in] flags Any combination of the \ref canVERSION_xxx flags, or 0.
*
* \return TRUE if the specified version of CANLIB is installed on the system.
*
* \sa \ref page_user_guide_build_driver_version
* \sa \ref page_code_snippets_examples
* \sa \ref canGetVersion(), \ref canGetVersionEx(), \ref canGetChannelData()
*/
BOOL CANLIBAPI canProbeVersion (const CanHandle hnd,
int major,
int minor,
int oem_id,
unsigned int flags);
#endif
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canResetBus(int handle);</b>
*
* \source_delphi <b>function canResetBus(handle: canHandle): canStatus; </b>
* \source_end
*
* This function tries to reset a CAN bus controller by taking the channel off
* bus and then on bus again (if it was on bus before the call to \ref canResetBus().)
*
* This function will affect the hardware (and cause a real reset of the CAN
* chip) only if \a hnd is the only handle open on the channel. If there
* are other open handles, this operation will not affect the hardware.
*
* \param[in] hnd A handle to an open circuit.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canBusOn(), \ref canBusOff()
*/
canStatus CANLIBAPI canResetBus (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canWriteWait(int handle, int id, byte[] msg, int dlc, int flag, long timeout);</b>
*
* \source_delphi <b>function canWriteWait(handle: canHandle; id: longint; var msg; dlc, flag, timeout : Cardinal): canStatus; </b>
* \source_end
*
* This function sends a CAN message. It returns when the message is sent, or
* the timeout expires.
*
* This is a convenience function that combines \ref canWrite() and \ref canWriteSync().
*
* If you are using the same channel via multiple handles, note that the
* default behaviour is that the different handles will "hear" each other just as
* if each handle referred to a channel of its own. If you open, say, channel 0
* from thread A and thread B and then send a message from thread A, it will be
* "received" by thread B.
* This behaviour can be changed using \ref canIOCTL_SET_LOCAL_TXECHO.
*
* \param[in] hnd A handle to an open CAN circuit.
* \param[in] id The identifier of the CAN message to send.
* \param[in] msg A pointer to the message data, or \c NULL.
* \param[in] dlc The length of the message in bytes.<br>
For Classic CAN dlc can be at most 8, unless \ref canOPEN_ACCEPT_LARGE_DLC is used.<br>
For CAN FD dlc can be one of the following 0-8, 12, 16, 20, 24, 32, 48, 64.
* \param[in] flag A combination of message flags, \ref canMSG_xxx.
* Use this parameter to send extended (29-bit) frames
* and/or remote frames. Use \ref canMSG_EXT and/or
* \ref canMSG_RTR for this purpose.
* \param[in] timeout The timeout, in milliseconds. 0xFFFFFFFF gives an
* infinite timeout.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
canStatus CANLIBAPI canWriteWait (const CanHandle hnd,
long id,
void *msg,
unsigned int dlc,
unsigned int flag,
unsigned long timeout);
#if defined(CANLIB_DECLARE_ALL)
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus canUnloadLibrary();</b>
*
* \source_delphi <b>function canUnloadLibrary: Integer; </b>
* \source_end
*
* \win_start
* Use this function if you are loading CANLIB32.DLL dynamically (that is,
* using the Win32 API \c LoadLibrary) and need to unload it using the Win32
* API \c FreeLibrary. \ref canUnloadLibrary() will free allocated memory, unload
* the DLLs canlib32.dll has loaded and de-initialize data structures. You must
* call \ref canInitializeLibrary() again to use the API functions in canlib32.dll.
* \win_end
* \linux_start
* \ref canUnloadLibrary() will close all open handles and free allocated memory.
* \linux_end
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canInitializeLibrary()
*/
canStatus CANLIBAPI canUnloadLibrary (void);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetAcceptanceFilter(int hnd, int code, int mask, int is_extended);</b>
*
* \source_delphi <b>function canSetAcceptanceFilter(handle: canHandle; code, mask: Cardinal; is_extended: Integer): canStatus; </b>
* \source_end
*
* This routine sets the message acceptance filters on a CAN channel.
*
* Format of \a code and \a mask:
*
* \li A binary 1 in a mask means "the corresponding bit in the code is
* relevant"
* \li A binary 0 in a mask means "the corresponding bit in the code is not
* relevant"
* \li A relevant binary 1 in a code means "the corresponding bit in the
* identifier must be 1"
* \li A relevant binary 1 in a code means "the corresponding bit in the
* identifier must be 1"
*
* In other words, the message is accepted if ((code XOR id) AND mask) == 0.
*
* \a extended should be set to:
*
* \li \c 0 (FALSE): if the code and mask shall apply to 11-bit CAN identifiers.
* \li \c 1 (TRUE): if the code and mask shall apply to 29-bit CAN identifiers.
*
* If you want to remove a filter, call \ref canSetAcceptanceFilter() with the mask
* set to \c 0.
*
* On some boards the acceptance filtering is done by the CAN hardware; on
* other boards (typically those with an embedded CPU,) the acceptance
* filtering is done by software. \ref canSetAcceptanceFilter() behaves in the same
* way for all boards, however.
*
* \ref canSetAcceptanceFilter() and \ref canAccept() both serve the same purpose but the
* former can set the code and mask in just one call.
*
* \note You can set the extended code and mask only on CAN boards that support
* extended identifiers.
*
* \note Not all CAN boards support different masks for standard and
* extended CAN identifiers.
*
* \param[in] hnd An open handle to a CAN circuit.
* \param[in] code The acceptance code to set.
* \param[in] mask The acceptance mask to set.
* \param[in] is_extended Select 29-bit CAN identifiers.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples,
* \ref page_user_guide_misc_code_and_mask
* \sa \ref canAccept()
*/
canStatus CANLIBAPI canSetAcceptanceFilter (const CanHandle hnd,
unsigned int code,
unsigned int mask,
int is_extended);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canFlushReceiveQueue(int hnd);</b>
*
* \source_delphi <b>function canFlushReceiveQueue(handle: canHandle): canStatus; </b>
* \source_end
*
* This function removes all received messages from the handle's receive queue.
* Other handles open to the same channel are not affcted by this
* operation. That is, only the messages belonging to the handle you are
* passing to \ref canFlushReceiveQueue are discarded.
*
* \note This call has the same effect as calling \ref canIoCtl() with a function
* code of \ref canIOCTL_FLUSH_RX_BUFFER.
*
* \param[in] hnd A handle to an open circuit.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canFlushTransmitQueue()
*/
canStatus CANLIBAPI canFlushReceiveQueue (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canFlushTransmitQueue(int hnd);</b>
*
* \source_delphi <b>function canFlushTransmitQueue(handle: canHandle): canStatus; </b>
* \source_end
*
* This function removes all messages pending transmission from the
* transmit queue of the circuit.
*
* \note If there are other handles open to the same circuit, they are also
* flushed.
*
* \note This call has the same effect as calling \ref canIoCtl() with a function
* code of \ref canIOCTL_FLUSH_TX_BUFFER.
*
* \param[in] hnd A handle to an open circuit.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canFlushReceiveQueue()
*/
canStatus CANLIBAPI canFlushTransmitQueue (const CanHandle hnd);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvGetApplicationMapping(int busType, string appName, int appChannel, out int resultingChannel);</b>
*
* \source_delphi <b>function kvGetApplicationMapping(busType: Integer; appName: PChar; appChannel: Integer; var resultingChannel: Integer): canStatus; </b>
* \source_end
*
* \note The \ref kvGetApplicationMapping function is presently not implemented.
*
* \param busType
* \param appName
* \param appChannel
* \param resultingChannel
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI kvGetApplicationMapping (int busType,
char *appName,
int appChannel,
int *resultingChannel);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvBeep(int hnd, int freq, int duration);</b>
*
* \source_delphi <b>function kvBeep(handle: canHandle; freq: Integer; duration: Cardinal): canStatus; </b>
* \source_end
*
* The \ref kvBeep function emits a sound of a specific frequency and duration from
* the loudspeaker on the device.
*
* \note This function requires that a loudspeaker be present on the hardware.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] freq The frequency (in Hertz) of the sound.
* \param[in] duration The duration of the sound, in milliseconds.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI kvBeep (const CanHandle hnd,
int freq,
unsigned int duration);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvSelfTest(int hnd, out int presults);</b>
*
* \source_delphi <b>function kvSelfTest(handle: canHandle; var presults: Cardinal): canStatus; </b>
* \source_end
*
* The \ref kvSelfTest function runs a built-in self test in the device. Note that
* not all devices supports built-in self tests.
*
* \param[in] hnd An open hnd to a CAN channel.
* \param[out] presults A pointer to a 32-bit unsigned integer where the
* resuls of the self test will be placed.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI kvSelfTest (const CanHandle hnd, unsigned long *presults);
/**
* \anchor kvLED_ACTION_xxx
* \name kvLED_ACTION_xxx
*
* The following constants can be used together with the \ref kvFlashLeds() function.
*
* @{
*/
#define kvLED_ACTION_ALL_LEDS_ON 0 ///< Turn all LEDs on.
#define kvLED_ACTION_ALL_LEDS_OFF 1 ///< Turn all LEDs off.
#define kvLED_ACTION_LED_0_ON 2 ///< Turn LED 0 on.
#define kvLED_ACTION_LED_0_OFF 3 ///< Turn LED 0 off.
#define kvLED_ACTION_LED_1_ON 4 ///< Turn LED 1 on.
#define kvLED_ACTION_LED_1_OFF 5 ///< Turn LED 1 off.
#define kvLED_ACTION_LED_2_ON 6 ///< Turn LED 2 on.
#define kvLED_ACTION_LED_2_OFF 7 ///< Turn LED 2 off.
#define kvLED_ACTION_LED_3_ON 8 ///< Turn LED 3 on.
#define kvLED_ACTION_LED_3_OFF 9 ///< Turn LED 3 off.
#define kvLED_ACTION_LED_4_ON 10 ///< Turn LED 4 on.
#define kvLED_ACTION_LED_4_OFF 11 ///< Turn LED 4 off.
#define kvLED_ACTION_LED_5_ON 12 ///< Turn LED 5 on.
#define kvLED_ACTION_LED_5_OFF 13 ///< Turn LED 5 off.
#define kvLED_ACTION_LED_6_ON 14 ///< Turn LED 6 on.
#define kvLED_ACTION_LED_6_OFF 15 ///< Turn LED 6 off.
#define kvLED_ACTION_LED_7_ON 16 ///< Turn LED 7 on.
#define kvLED_ACTION_LED_7_OFF 17 ///< Turn LED 7 off.
#define kvLED_ACTION_LED_8_ON 18 ///< Turn LED 8 on.
#define kvLED_ACTION_LED_8_OFF 19 ///< Turn LED 8 off.
#define kvLED_ACTION_LED_9_ON 20 ///< Turn LED 9 on.
#define kvLED_ACTION_LED_9_OFF 21 ///< Turn LED 9 off.
#define kvLED_ACTION_LED_10_ON 22 ///< Turn LED 10 on.
#define kvLED_ACTION_LED_10_OFF 23 ///< Turn LED 10 off.
#define kvLED_ACTION_LED_11_ON 24 ///< Turn LED 11 on.
#define kvLED_ACTION_LED_11_OFF 25 ///< Turn LED 11 off.
/** @} */
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvFlashLeds(int hnd, int action, int timeout);</b>
*
* \source_delphi <b>function kvFlashLeds(handle: canHandle; action: Integer; timeout: Integer): canStatus; </b>
* \source_end
*
* The \ref kvFlashLeds function will turn the LEDs on the device on or off.
*
* \param[in] hnd
* \param[in] action One of the \ref kvLED_ACTION_xxx constants, defining
* which LED to turn on or off.
* \param[in] timeout Specifies the time, in milliseconds, during which the
* action is to be carried out. When the timeout expires,
* the LED(s) will return to its ordinary function.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
canStatus CANLIBAPI kvFlashLeds (const CanHandle hnd, int action, int timeout);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canRequestChipStatus(int hnd);</b>
*
* \source_delphi <b>function canRequestChipStatus(handle: canHandle): canStatus; </b>
* \source_end
*
* \win_start
* The canRequestChipStatus function requests that the hardware report the chip
* status (bus on/error passive status etc.) to the driver. The chip status can
* later be retrieved using the \ref canReadStatus() function.
*
* \note The \ref canRequestChipStatus() function is asynchronous, that is, it
* completes before the answer is returned from the hardware. The time between
* a call to \ref canRequestChipStatus() and the point in time where the chip status
* is actually available via a call to \ref canReadStatus() is not
* defined. \ref canReadStatus() always returns the latest data reported by the
* hardware.
* \win_end
* \linux_start
* This function is a dummy implementation for code portability. The Linux
* implementation of \ref canReadStatus() will return the latest status without
* need of an additional call to canRequestChipStatus(), unlike the Windows
* counterpart.
* \linux_end
*
* \param[in] hnd An open handle to a CAN channel.
*
* \win_start
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
* \win_end
* \linux_start
* \return \ref canOK (zero)
* \linux_end
*
* \sa \ref canReadStatus()
*/
canStatus CANLIBAPI canRequestChipStatus (const CanHandle hnd);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canRequestBusStatistics(int hnd);</b>
*
* \source_delphi <b>function canRequestBusStatistics(handle: canHandle): canStatus; </b>
* \source_end
*
* The \ref canRequestBusStatistics function requests bus statistics from the
* hardware. The bus statistics figures can be retrieved later by a call to the
* \ref canGetBusStatistics function.
*
* \note The time between a call to \ref canRequestBusStatistics() and the point in
* time where the bus statistics is actually available via a call to
* \ref canGetBusStatistics() is not defined. Typically, you would call
* \ref canRequestBusStatistics() from your application periodically (for example,
* once per second) to request the data from the driver and then call
* \ref canGetBusStatistics() with the same rate to obtain the latest reported data.
*
* \param[in] hnd An open handle to a CAN channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canGetBusStatistics()
*/
canStatus CANLIBAPI canRequestBusStatistics (const CanHandle hnd);
/**
* \ingroup CAN
* This struct is returned by \ref canGetBusStatistics()
*
* The values are cleared when the corresponding channel goes on bus.
*/
typedef struct canBusStatistics_s {
unsigned long stdData; ///< Number of received standard (11-bit identifiers) data frames.
unsigned long stdRemote; ///< Number of received standard (11-bit identifiers) remote frames.
unsigned long extData; ///< Number of received extended (29-bit identifiers) data frames.
unsigned long extRemote; ///< Number of received extended (29-bit identifiers) remote frames.
unsigned long errFrame; ///< Number of error frames
/**
* The bus load, expressed as an integer in the interval 0 - 10000
* representing 0.00% - 100.00% bus load.
*/
unsigned long busLoad;
unsigned long overruns; ///< The number of overruns detected by the hardware, firmware or driver.
} canBusStatistics;
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetBusStatistics(int hnd, out Canlib.canBusStatistics stat);</b>
*
* \source_delphi <b>function canGetBusStatistics(handle: canHandle; var stat: canBusStatistics; bufsiz: Cardinal): canStatus; </b>
* \source_end
*
* The \ref canGetBusStatistics() function retrieves the latest bus statistics
* figures reported by the driver. You request the bus statistics from the
* driver by calling the \ref canRequestBusStatistics() function.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] stat A pointer to a \ref canBusStatistics struct that will receive
* the bus statistics figures.
* \param[in] bufsiz The size, in bytes, of the stat buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canRequestBusStatistics()
*/
canStatus CANLIBAPI canGetBusStatistics (const CanHandle hnd,
canBusStatistics *stat,
size_t bufsiz);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canSetBitrate(int hnd, int bitrate);</b>
*
* \source_delphi <b>function canSetBitrate(handle: canHandle; bitrate: Integer): canStatus; </b>
* \source_end
*
* The \ref canSetBitrate() function sets the nominal bit rate of the specified
* CAN channel. The sampling point is recalculated and kept as close as
* possible to the value before the call.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] bitrate The new bit rate, in bits/second.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canSetBusParamsC200(), \ref canSetBusParams(), \ref canGetBusParams()
*/
canStatus CANLIBAPI canSetBitrate (const CanHandle hnd, int bitrate);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvAnnounceIdentity(int hnd, object buffer);</b>
*
* \source_delphi <b>function kvAnnounceIdentity(handle: canHandle; var buf; bufsiz: Cardinal): canStatus; </b>
* \source_end
*
* The \ref kvAnnounceIdentity function is used by certain OEM applications.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] buf A pointer to the data to be sent to the driver.
* \param[in] bufsiz The size, in bytes, of the buffer that buf points to.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
canStatus CANLIBAPI kvAnnounceIdentity (const CanHandle hnd,
void *buf,
size_t bufsiz);
/**
* \ingroup General
*
* The \ref kvAnnounceIdentityEx function is used by certain OEM applications.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] type Type of announcement.
* \param[out] buf A pointer to the data to be sent to the driver.
* \param[in] bufsiz The size, in bytes, of the buffer that buf points to.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
canStatus CANLIBAPI kvAnnounceIdentityEx (const CanHandle hnd,
int type,
void *buf,
size_t bufsiz);
/**
* \ingroup CAN
*
* \source_cs <b>static Canlib.canStatus canGetHandleData(int hnd, int item, out object buffer);</b>
*
* \source_delphi <b>function canGetHandleData(handle: canHandle; item: Integer; var Buffer; bufsize: Cardinal): canStatus; </b>
* \source_end
*
* \note This function can be used to retrieve certain pieces of information about an open handle to a CANlib channel.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] item This parameter specifies what data to obtain for the specified handle. The value is one of the constants \ref canCHANNELDATA_xxx
* \param[out] buffer The address of a buffer which is to receive the data.
* \param[in] bufsize The size of the buffer to which the buffer parameter points.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canGetChannelData()
*/
canStatus CANLIBAPI canGetHandleData (const CanHandle hnd,
int item,
void *buffer,
size_t bufsize);
/** Used for time domain handling. */
typedef void *kvTimeDomain;
/** Contains status codes according to \ref canSTAT_xxx. */
typedef canStatus kvStatus;
/**
* \ingroup TimeDomainHandling
*
* Used for time domain handling.
*/
typedef struct kvTimeDomainData_s {
int nMagiSyncGroups; ///< number of MagiSync&tm; groups
int nMagiSyncedMembers; ///< number of MagiSync&tm; members
int nNonMagiSyncCards; ///< number of non MagiSync&tm; interfaces
int nNonMagiSyncedMembers; ///< number of non MagiSync&tm; members
} kvTimeDomainData;
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainCreate(out object domain);</b>
*
* \source_delphi <b>function kvTimeDomainCreate(var domain: kvTimeDomain): kvStatus; </b>
* \source_end
*
* This routine creates an empty time domain.
*
* The variable is set by this function and then used in later calls to
* other functions using a \ref kvTimeDomain.
*
* Time domains created by \ref kvTimeDomainCreate() can be destroyed with a
* call to \ref kvTimeDomainDelete().
*
* \note A time domain is a set of channels with a common time base.
*
* \param[out] domain A pointer to a caller allocated, opaque variable of type
* \ref kvTimeDomain that holds data to identify a particlar
* time domain.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvTimeDomainDelete()
*/
kvStatus CANLIBAPI kvTimeDomainCreate (kvTimeDomain *domain);
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainDelete(object domain);</b>
*
* \source_delphi <b>function kvTimeDomainDelete(domain: kvTimeDomain): kvStatus; </b>
* \source_end
*
* This is a cleanup routine that deletes all members of a domain and then
* deletes the domain itself.
*
* \note A time domain is a set of channels with a common time base.
*
* \param[in] domain An opaque variable set by \ref kvTimeDomainCreate() that
* identifies the domain to be deleted.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvTimeDomainCreate()
*/
kvStatus CANLIBAPI kvTimeDomainDelete (kvTimeDomain domain);
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainResetTime(object domain);</b>
*
* \source_delphi <b>function kvTimeDomainResetTime(domain: kvTimeDomain): kvStatus; </b>
* \source_end
*
* This routine resets the time on all members of a time domain.
*
* After a call to this routine timestamps from all channels with MagiSync&tm;
* running have no offset at all any longer. The same applies for channels that
* reside on the same physical interface.
*
* \note A time domain is a set of channels with a common time base.
*
* \param[in] domain An opaque variable set by \ref kvTimeDomainCreate() that
* identifies the domain to reset the time on.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvTimeDomainCreate()
*/
kvStatus CANLIBAPI kvTimeDomainResetTime (kvTimeDomain domain);
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainGetData(object domain, Canlib.kvTimeDomainData data);</b>
*
* \source_delphi <b>function kvTimeDomainGetData(domain: kvTimeDomain; var data: kvTimeDomainData; bufsiz: Cardinal): kvStatus; </b>
* \source_end
*
* This routine collects some data on a time domain.
*
* \note A time domain is a set of channels with a common time base.
*
* \param[in] domain An opaque variable set by \ref kvTimeDomainCreate() that
* identifies the domain to add a handle to.
* \param[out] data A pointer to a \ref kvTimeDomainData that is to be filled by
* the function.
* \param[in] bufsiz The size in bytes of the \ref kvTimeDomainData struct.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvTimeDomainCreate()
*/
kvStatus CANLIBAPI kvTimeDomainGetData (kvTimeDomain domain,
kvTimeDomainData *data,
size_t bufsiz);
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainAddHandle(object domain, int handle);</b>
*
* \source_delphi <b>function kvTimeDomainAddHandle(domain: kvTimeDomain; handle: canHandle): kvStatus; </b>
* \source_end
*
* This routine adds an open channel handle to a domain.
*
* \note A time domain is a set of channels with a common time base.
*
* \param[in] domain An opaque variable set by \ref kvTimeDomainCreate()
* that identifies the domain to add a handle to.
* \param[in] hnd A handle to an open channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvTimeDomainCreate(), \ref kvTimeDomainRemoveHandle()
*/
kvStatus CANLIBAPI kvTimeDomainAddHandle(kvTimeDomain domain,
const CanHandle hnd);
/**
* \ingroup TimeDomainHandling
*
* \source_cs <b>static Canlib.canStatus kvTimeDomainRemoveHandle(object domain, int handle);</b>
*
* \source_delphi <b>function kvTimeDomainRemoveHandle(domain: kvTimeDomain; handle: canHandle): kvStatus; </b>
* \source_end
*
* This routine removes an open channel handle from a domain.
*
* \note A time domain is a set of channels with a common time base.
*
* \param[in] domain An opaque variable set by \ref kvTimeDomainCreate()
* that identifies the domain to remove a handle from.
* \param[in] hnd A handle to an open channel.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvTimeDomainCreate(), \ref kvTimeDomainAddHandle()
*/
kvStatus CANLIBAPI kvTimeDomainRemoveHandle (kvTimeDomain domain,
const CanHandle hnd);
/**
* \name kvCallback_t
* \anchor kvCallback_t
* \ref kvCallback_t is used by the function \ref kvSetNotifyCallback()
*
* The callback function is called with the following arguments:
* \li hnd - the handle of the CAN channel where the event happened.
* \li context - the context pointer you passed to \ref kvSetNotifyCallback().
* \li notifyEvent - one of the \ref canNOTIFY_xxx notification codes.
*
* \note It is really the \ref canNOTIFY_xxx codes, and not the
* \ref canEVENT_xxx codes that the \ref canSetNotify() API is using.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] context Arbitrary user-defined context data which
* is passed to the callback function.
* \param[in] notifyEvent One or more of the \ref canEVENT_xxx flags.
*
*/
typedef void (CANLIBAPI *kvCallback_t) (CanHandle hnd, void* context, unsigned int notifyEvent);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvSetNotifyCallback(int hnd, Canlib.kvCallbackDelegate callback, IntPtr context, uint notifyFlags);</b>
*
* \source_delphi <b>function kvSetNotifyCallback(handle: canHandle; callback: kvCallback_t; context: Pointer; notifyFlags: Cardinal): canStatus; </b>
* \source_end
*
* The \ref kvSetNotifyCallback() function registers a callback function which is
* called when certain events occur.
*
* You can register at most one callback function per handle at any time.
*
* To remove the callback, call \ref kvSetNotifyCallback() with a \c NULL pointer in
* the callback argument.
*
* \note The callback function is called in the context of a high-priority
* thread created by CANLIB. You should take precaution not to do any time
* consuming tasks in the callback. You must also arrange the synchronization
* between the callback and your other threads yourself.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] callback A pointer to a callback function of type
* \ref kvCallback_t
* \param[in] context A pointer to arbitrary user-defined context data which
* is passed to the callback function.
* \param[in] notifyFlags One or more of the \ref canNOTIFY_xxx flags.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canSetNotify()
*/
kvStatus CANLIBAPI kvSetNotifyCallback (const CanHandle hnd,
kvCallback_t callback,
void* context,
unsigned int notifyFlags);
/**
* \name kvBUSTYPE_xxx
* \anchor kvBUSTYPE_xxx
*
* Bus types, returned by \ref kvGetSupportedInterfaceInfo().
* @{
*/
#define kvBUSTYPE_NONE 0 ///< Unkown bus type.
#define kvBUSTYPE_PCI 1 ///< Bus of type PCI.
#define kvBUSTYPE_PCMCIA 2 ///< Bus of type PCMCIA
#define kvBUSTYPE_USB 3 ///< Bus of type USB
#define kvBUSTYPE_WLAN 4 ///< Bus of type WLAN
#define kvBUSTYPE_PCI_EXPRESS 5 ///< Bus of type PCI Express
#define kvBUSTYPE_ISA 6 ///< Bus of type ISA
#define kvBUSTYPE_VIRTUAL 7 ///< Bus of type virtual
#define kvBUSTYPE_PC104_PLUS 8 ///< Bus of type PC104+
#define kvBUSTYPE_LAN 9 ///< Bus of type LAN
/** @} */
/**
* \name kvBUSTYPE_GROUP_xxx
* \anchor kvBUSTYPE_GROUP_xxx
*
* Bus type group, returned when using \ref canCHANNELDATA_BUS_TYPE
* This is a grouping of the individual \ref kvBUSTYPE_xxx.
* @{
*/
#define kvBUSTYPE_GROUP_VIRTUAL 1 ///< \ref kvBUSTYPE_VIRTUAL
#define kvBUSTYPE_GROUP_LOCAL 2 ///< \ref kvBUSTYPE_USB
#define kvBUSTYPE_GROUP_REMOTE 3 ///< \ref kvBUSTYPE_WLAN, \ref kvBUSTYPE_LAN
#define kvBUSTYPE_GROUP_INTERNAL 4 ///< \ref kvBUSTYPE_PCI, \ref kvBUSTYPE_PCMCIA, ...
/** @} */
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvGetSupportedInterfaceInfo(int index, out string hwName, out int hwType, out int hwBusType);</b>
*
* \source_delphi <b>function kvGetSupportedInterfaceInfo(index: Integer; hwName: PChar; nameLen: Cardinal; var hwType: Integer; var hwBusType: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvGetSupportedInterfaceInfo function returns information about the
* different supported hardware types in the installed version of CANLIB.
*
* This function is used to enumerate all the supported hardware types in the
* installed version of CANLIB. It does not return a complete list of all
* supported devices, nor does it return a list of the presently installed
* hardware. The returned data indicates which device families are supported.
*
* For example, a returned set of data might be:
* \li \a hwType = \ref canHWTYPE_MEMORATOR_PRO
* \li \a hwBusType = \ref kvBUSTYPE_USB
* \li \a hwName = \c "Kvaser Memorator Professional"
*
* This means that
* \li the presently installed version of CANLIB supports members in the Kvaser
* Memorator Pro family (e.g. the HS/HS and the HS/LS),
* \li the members of the Kvaser Memorator Pro family are USB devices,
* \li the members of the Kvaser Memorator Pro family use the
* \ref canHWTYPE_MEMORATOR_PRO hardware type.
*
* The \ref kvGetSupportedInterfaceInfo() function is intended to help
* application designers build a bus-oriented display of the different
* installed and/or supported Kvaser devices in the computer.
*
* \param[in] index Use this parameter to enumerate the different supported
* hardware types. Start with index = 0, and then call
* \ref kvGetSupportedInterfaceInfo again() with index =
* 1,2,3,... until the function returns an error code.
* \param[out] hwName A pointer to a buffer that will receive the name of the
* hardware family, as a zero-terminated ASCII string.
* \param[in] nameLen The length of the hwName buffer.
* \param[out] hwType Pointer to a 32-bit integer that will receive the
* hardware type (one of the \ref canHWTYPE_xxx
* constants.)
* \param[out] hwBusType Pointer to a 32-bit integer that will receive the bus
* type (one of the \ref kvBUSTYPE_xxx constants.)
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canBusOn(), \ref canResetBus()
*/
kvStatus CANLIBAPI kvGetSupportedInterfaceInfo (int index,
char *hwName,
size_t nameLen,
int *hwType,
int *hwBusType);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvReadDeviceCustomerData(int hnd, int userNumber, int itemNumber, byte[] data, int bufsize);</b>
*
* \source_delphi <b>function kvReadDeviceCustomerData(hnd: canHandle;userNumber, itemNumber: Integer; var data; bufsize: Cardinal): kvStatus; </b>
* \source_end
*
* Reading customer data works with Kvaser Leaf (of all
* types), Kvaser USBcan Professional, Kvaser Memorator Professional, Kvaser Eagle and
* Kvaser Memorator Light. To write customer data use external tools.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] userNumber Assigned by Kvaser.
* \param[in] itemNumber Must be zero (reserved)
* \param[out] data A pointer to a buffer of up to 8 bytes where
* the result will be placed.
* \param[in] bufsiz The size of the buffer that data points at.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
kvStatus CANLIBAPI kvReadDeviceCustomerData (const CanHandle hnd,
int userNumber,
int itemNumber,
void *data,
size_t bufsiz);
//
//
// APIs for t-script
//
/**
* \ingroup tScript
* \name kvENVVAR_TYPE_xxx
* \anchor kvENVVAR_TYPE_xxx
*
* These defines are used in \ref kvScriptEnvvarOpen().
* @{
*/
/**
* This define is used in \ref kvScriptEnvvarOpen().
*
* It defines the type of the envvar as \c int.
*/
#define kvENVVAR_TYPE_INT 1
/**
* This define is used in \ref kvScriptEnvvarOpen().
*
* It defines the type of the envvar as \c float.
*/
#define kvENVVAR_TYPE_FLOAT 2
/**
* This define is used in \ref kvScriptEnvvarOpen().
*
* It defines the type of the envvar as \c string.
*/
#define kvENVVAR_TYPE_STRING 3
/** @} */
/**
* \ingroup tScript
* \name kvEVENT_xxx
* \anchor kvEVENT_xxx
*
* These defines are used in \ref kvScriptSendEvent().
* @{
*/
/**
* This define is used in \ref kvScriptSendEvent().
*
* It defines an event of type "key pressed".
*/
#define kvEVENT_TYPE_KEY 1
/** @} */
/**
* \ingroup tScript
*
* A handle to a t-script envvar.
* Returned by the function \ref kvScriptEnvvarOpen().
*/
typedef __int64 kvEnvHandle;
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptStart(int hnd, int slotNo);</b>
*
* \source_delphi <b>function kvScriptStart(const hnd: canHandle; slotNo: integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptStart() function starts a loaded script.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot with the loaded script we want to start.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptLoadFile(), \ref kvScriptStop()
*/
kvStatus CANLIBAPI kvScriptStart (const CanHandle hnd, int slotNo);
/**
* Script stop modes. Used by \ref kvScriptStop().
* \anchor kvSCRIPT_STOP_xxx
* \name kvSCRIPT_STOP_xxx
* @{
*/
#define kvSCRIPT_STOP_NORMAL 0 /**< Stop a running script */
#define kvSCRIPT_STOP_FORCED -9 /**< Request termination of a hanged script */
/** @} */
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptStop(int hnd, int slotNo, int mode);</b>
*
* \source_delphi <b>function kvScriptStop(const hnd: canHandle; slotNo: integer; mode: integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptStop() function stops a started script.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot with the loaded and running script we want to stop.
* \param[in] mode Stop mode of type \ref kvSCRIPT_STOP_xxx
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptLoadFile(), \ref kvScriptStart()
*/
kvStatus CANLIBAPI kvScriptStop (const CanHandle hnd, int slotNo, int mode);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptUnload(int hnd, int slotNo);</b>
*
* \source_delphi <b>function kvScriptUnload(const hnd: canHandle; slotNo: integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptUnload() function unloads a stopped script.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot with the loaded and stopped script we want to unload.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptLoadFile(), \ref kvScriptStop()
*/
kvStatus CANLIBAPI kvScriptUnload (const CanHandle hnd, int slotNo);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptSendEvent(int hnd, int slotNo, int eventType, int eventNo, uint data);</b>
*
* \source_delphi <b>function kvScriptSendEvent(const hnd: canHandle; slotNo: integer; eventType: integer; eventNo: integer; data: Cardinal): kvStatus; </b>
* \source_end
*
* The \ref kvScriptSendEvent() function sends an event of a type, and an event
* number and associated data to a script running in a specific slot.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot where the script was loaded and is running.
* \param[in] eventType The event to send, of type \ref kvEVENT_xxx
* \param[in] eventNo The event's number.
* \param[in] data The event's data.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
*/
kvStatus CANLIBAPI kvScriptSendEvent (const CanHandle hnd,
int slotNo,
int eventType,
int eventNo,
unsigned int data);
/**
* \ingroup tScript
*
* \source_cs <b>static long kvScriptEnvvarOpen(int hnd, string envvarName, out int envvarType, out int envvarSize);</b>
*
* \source_delphi <b>function kvScriptEnvvarOpen(const hnd: canHandle; envvarName: PChar; var envvarType: Integer; var envvarSize: Integer): \ref kvEnvHandle; </b>
* \source_end
*
* The \ref kvScriptEnvvarOpen() opens an existing envvar and returns a handle to it.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] envvarName The envvar's name; a pointer to a \c NULL terminated
* array of chars.
* \param[out] envvarType A pointer to a 32-bit integer that will receive the
* \ref kvENVVAR_TYPE_xxx type.
* \param[out] envvarSize A pointer to a 32-bit integer that will receive the
* size of the envvar in bytes.
*
* \return A \ref kvEnvHandle handle (positive) to an envvar if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarClose()
*/
kvEnvHandle CANLIBAPI kvScriptEnvvarOpen (const CanHandle hnd,
char* envvarName,
int *envvarType,
int *envvarSize); // returns scriptHandle
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarClose(long eHnd);</b>
*
* \source_delphi <b>function kvScriptEnvvarClose(const eHnd: kvEnvHandle): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarClose() function closes an open envvar.
*
* \param[in] eHnd An open handle to an envvar.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvScriptEnvvarOpen()
*/
kvStatus CANLIBAPI kvScriptEnvvarClose (kvEnvHandle eHnd);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarSetInt(long eHnd, int val);</b>
*
* \source_delphi <b>function kvScriptEnvvarSetInt(const eHnd: kvEnvHandle; val: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarSetInt() sets the value of an \c int envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[in] val The new value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarGetInt(), \ref kvScriptEnvvarSetFloat(),
* \ref kvScriptEnvvarSetData()
*/
kvStatus CANLIBAPI kvScriptEnvvarSetInt (kvEnvHandle eHnd, int val);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarGetInt(long eHnd, out int val);</b>
*
* \source_delphi <b>function kvScriptEnvvarGetInt(const eHnd: kvEnvHandle; var val: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarGetInt() function retrieves the value of an \c int envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[out] val The current value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarSetInt(), \ref kvScriptEnvvarGetFloat(),
* \ref kvScriptEnvvarGetData()
*
*/
kvStatus CANLIBAPI kvScriptEnvvarGetInt (kvEnvHandle eHnd, int *val);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarSetFloat(long eHnd, float val);</b>
*
* \source_delphi <b>function kvScriptEnvvarSetFloat(const eHnd: kvEnvHandle; val: Single): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarSetFloat() sets the value of a \c float envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[in] val The new value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarGetFloat(), \ref kvScriptEnvvarSetInt(),
* \ref kvScriptEnvvarSetData()
*/
kvStatus CANLIBAPI kvScriptEnvvarSetFloat (kvEnvHandle eHnd, float val);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarGetFloat(long eHnd, out float val);</b>
*
* \source_delphi <b>function kvScriptEnvvarGetFloat(const eHnd: kvEnvHandle; var val: Single): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarGetFloat() function retrieves the value of a \c float envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[out] val A pointer to a \c float where the retrieved result should be
* stored.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarSetFloat(), \ref kvScriptEnvvarGetInt(),
* \ref kvScriptEnvvarGetData()
*/
kvStatus CANLIBAPI kvScriptEnvvarGetFloat (kvEnvHandle eHnd, float *val);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarSetData(long eHnd, byte[] buf, int start_index, int data_len);</b>
*
* \source_delphi <b>function kvScriptEnvvarSetData(const eHnd: kvEnvHandle; var buf; start_index: Integer; data_len: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarSetData() function sets a range of data bytes in an envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[in] buf A pointer to a data area with the new values.
* \param[in] start_index The start index of the envvar's data range that we
* want to update.
* \param[in] data_len The length in bytes of the envvar's data range that
* we want to update.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarGetData(), \ref kvScriptEnvvarSetInt(),
* \ref kvScriptEnvvarSetFloat()
*/
kvStatus CANLIBAPI kvScriptEnvvarSetData (kvEnvHandle eHnd,
void *buf,
int start_index,
int data_len);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptEnvvarGetData(long eHnd, out byte[] buf, int start_index, int data_len);</b>
*
* \source_delphi <b>function kvScriptEnvvarGetData(const eHnd: kvEnvHandle; var buf; start_index: Integer; data_len: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvScriptEnvvarGetData() function retrieves a range of data bytes from an envvar.
*
* \param[in] eHnd An open handle to an envvar.
* \param[out] buf A pointer to a data area where the retrieved data
* range should be stored.
* \param[in] start_index The start index of the data range.
* \param[in] data_len The length in bytes of the data range.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptEnvvarOpen(), \ref kvScriptEnvvarSetData(), \ref kvScriptEnvvarGetInt(),
* \ref kvScriptEnvvarGetFloat()
*/
kvStatus CANLIBAPI kvScriptEnvvarGetData (kvEnvHandle eHnd,
void *buf,
int start_index,
int data_len);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptLoadFileOnDevice(int hnd, int slotNo, ref string localFile);</b>
*
* \source_delphi <b>function kvScriptLoadFileOnDevice(hnd: canHandle; slotNo: Integer; localFile: PChar): kvStatus; </b>
* \source_end
*
* The \ref kvScriptLoadFileOnDevice() function loads a compiled script file (.txe)
* stored on the device (SD card) into a script slot on the device.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot where to load the script.
* \param[in] localFile The script file name; a pointer to a \c NULL terminated
* array of chars.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptLoadFile(), \ref kvFileCopyToDevice(), \ref kvScriptStart(),
* \ref kvScriptStop()
*/
kvStatus CANLIBAPI kvScriptLoadFileOnDevice (const CanHandle hnd,
int slotNo,
char *localFile);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptLoadFile(int hnd, int slotNo, ref string filePathOnPC);</b>
*
* \source_delphi <b>function kvScriptLoadFile(hnd: canHandle; slotNo: Integer; filePathOnPC: PChar): kvStatus; </b>
* \source_end
*
* The \ref kvScriptLoadFile() function loads a compiled script file (.txe) stored
* on the host (PC) into a script slot on the device.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slotNo The slot where to load the script.
* \param[in] filePathOnPC The script file name; a pointer to a \c NULL
* terminated array of chars.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref page_code_snippets_examples
* \sa \ref kvScriptLoadFileOnDevice(), \ref kvFileCopyToDevice(), \ref kvScriptStart(),
* \ref kvScriptStop()
*/
kvStatus CANLIBAPI kvScriptLoadFile (const CanHandle hnd,
int slotNo,
char *filePathOnPC);
/**
* \ingroup General
* \name kvSCRIPT_REQUEST_TEXT_xxx
* \anchor kvSCRIPT_REQUEST_TEXT_xxx
*
* These defines are used in \ref kvScriptRequestText() for printf message subscribe/unsubscribe.
*
* @{
*/
/**
* Cancel subscription of printf messages from script slots.
*/
#define kvSCRIPT_REQUEST_TEXT_UNSUBSCRIBE 1
/**
* Subscribe to printf messages from script slots.
*/
#define kvSCRIPT_REQUEST_TEXT_SUBSCRIBE 2
/**
* Select all script slots.
*/
#define kvSCRIPT_REQUEST_TEXT_ALL_SLOTS 255
/** @} */
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptRequestText(int hnd, int slot, int request);</b>
*
* \source_delphi <b>function kvScriptRequestText(hnd: canHandle; slotNo: cardinal; request: cardinal): kvStatus; </b>
* \source_end
*
* The \ref kvScriptRequestText() Sets up a printf subscription to a
* selected script slot.
* Read the printf messages with \ref kvScriptGetText().
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slot The slot to subscribe to.
* \param[in] request Subscription request i.e. \ref kvSCRIPT_REQUEST_TEXT_xxx.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
kvStatus CANLIBAPI kvScriptRequestText(const CanHandle hnd,
unsigned int slot,
unsigned int request);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptGetText(int hnd, out int slot, out ulong time, out int flags, out string buf);</b>
*
* \source_delphi <b>function kvScriptGetText(hnd: canHandle; var slot: integer; var time: Cardinal; var flags: Cardinal; buf: PChar; bufsize: Cardinal): kvStatus; </b>
* \source_end
*
* The \ref kvScriptGetText() Reads a printf from a subscribed script slot.
* Set up a subscription with \ref kvScriptRequestText().
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] slot The slot where the printf originated.
* \param[out] time The printf timestamp.
* \param[out] flags Printf flags. A combination of \ref canSTAT_xxx flags.
* \param[out] buf Buffer to hold the printf string.
* \param[in] bufsize Size of the buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
kvStatus CANLIBAPI kvScriptGetText(const CanHandle hnd,
int *slot,
unsigned long *time,
unsigned int *flags,
char *buf,
size_t bufsize
);
/**
* Script status flag bits. Used by \ref kvScriptStatus().
* \anchor kvSCRIPT_STATUS_xxx
* \name kvSCRIPT_STATUS_xxx
* @{
*/
#define kvSCRIPT_STATUS_LOADED 1 /**< The slot is loaded with a script */
#define kvSCRIPT_STATUS_RUNNING 2 /**< The slot is running a script. */
/** @} */
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvScriptStatus(int hnd, int slot, out unsigned int status);</b>
* \source_delphi <b>function kvScriptStatus(hnd: canHandle; var slot: integer; var time: integer): kvStatus;</b>
* \source_end
*
* The \ref kvScriptStatus() function reads the current status of a script slot.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] slot The slot which status we want.
* \param[out] status The script status, as \ref kvSCRIPT_STATUS_xxx flag bits
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
kvStatus CANLIBAPI kvScriptStatus(const CanHandle hnd,
int slot,
unsigned int *status);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileCopyToDevice(int hnd, string hostFileName, string deviceFileName);</b>
*
* \source_delphi <b>function kvFileCopyToDevice(hnd: canHandle; hostFileName: PChar; deviceFileName: PChar): kvStatus; </b>
* \source_end
*
* The \ref kvFileCopyToDevice() function copies an arbitrary file from the host to
* the device.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] hostFileName The host file name; a pointer to a \c NULL terminated
* array of chars.
* \param[in] deviceFileName The target device file name; a pointer to a \c NULL
* terminated array of chars.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvFileCopyFromDevice(), \ref kvFileDelete()
*/
kvStatus CANLIBAPI kvFileCopyToDevice (const CanHandle hnd,
char *hostFileName,
char *deviceFileName);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileCopyFromDevice(int hnd, string deviceFileName, string hostFileName);</b>
*
* \source_delphi <b>function kvFileCopyFromDevice(hnd: canHandle; deviceFileName: PChar; hostFileName: PChar): kvStatus; </b>
* \source_end
*
* The \ref kvFileCopyFromDevice() function copies an arbitrary file from the device
* to the host.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] deviceFileName The device file name; a pointer to a \c NULL
* terminated array of chars.
* \param[in] hostFileName The target host file name; a pointer to a \c NULL terminated
* array of chars.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvFileCopyToDevice()
*/
kvStatus CANLIBAPI kvFileCopyFromDevice (const CanHandle hnd,
char *deviceFileName,
char *hostFileName);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileDelete(int hnd, string deviceFileName);</b>
*
* \source_delphi <b>function kvFileDelete(hnd: canHandle; deviceFileName: PChar): kvStatus; </b>
* \source_end
*
* The \ref kvFileDelete() function deletes a file on the device.
*
* \note Deleting system files is not recommended.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] deviceFileName The file on the device to delete; a pointer
* to a \c NULL terminated array of chars.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvFileCopyToDevice()
*/
kvStatus CANLIBAPI kvFileDelete (const CanHandle hnd, char *deviceFileName);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileGetName(int hnd, int fileNo, out string name);</b>
*
* \source_delphi <b>function kvFileGetName(hnd: canHandle; fileNo: Integer; name: PChar; namelen: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvFileGetName() function returns the name of the file with
* number \a fileNo.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] fileNo The number of the file.
* \param[out] name A buffer that will contain the name of the
* file. The name is a zero-terminated ASCII string.
* \param[in] namelen The length, in bytes, of the \a name buffer.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvFileGetCount(), \ref kvFileGetSystemData()
*/
kvStatus CANLIBAPI kvFileGetName (const CanHandle hnd,
int fileNo,
char *name,
int namelen);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileGetCount(int hnd, out int count);</b>
*
* \source_delphi <b>function kvFileGetCount(hnd: canHandle; var count: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvFileGetCount() function returns the number of files.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] count A pointer to a 32-bit integer that will receive
* the file count.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvFileGetName(), \ref kvFileGetSystemData()
*/
kvStatus CANLIBAPI kvFileGetCount (const CanHandle hnd, int *count);
/**
* \ingroup tScript
*
* \source_cs <b>static Canlib.canStatus kvFileGetSystemData(int hnd, int itemCode, out int result);</b>
*
* \source_delphi <b>function kvFileGetSystemData(hnd: canHandle; itemCode: Integer; var result: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvFileGetSystemData() function is used for reading disk parameters,
* e.g. size, max number of (user) files, etc.
*
* \note Not yet implemented
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] itemCode The item we want information on.
* \param[out] result A pointer to a 32-bit integer that will
* receive the result.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
*/
kvStatus CANLIBAPI kvFileGetSystemData (const CanHandle hnd,
int itemCode,
int *result);
/**
* \ingroup General
* \anchor kvDEVICE_MODE_xxx
* \name kvDEVICE_MODE_xxx
*
* These defines are used in \ref kvDeviceSetMode() and \ref kvDeviceGetMode().
*
* \note The mode is device specific, which means that not all modes are
* implemented in all products.
*
* @{
*/
/**
* This define is used in \ref kvDeviceSetMode() and \ref kvDeviceGetMode().
*
* Device is running or should be running in interface mode.
*/
#define kvDEVICE_MODE_INTERFACE 0x00
/**
* This define is used in \ref kvDeviceSetMode() and \ref kvDeviceGetMode().
*
* Device is running or should be running in logger mode.
*/
#define kvDEVICE_MODE_LOGGER 0x01
/** @} */
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvDeviceSetMode(int hnd, int mode);</b>
*
* \source_delphi <b>function kvDeviceSetMode(hnd: canHandle; mode: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvDeviceSetMode() sets the mode.
*
* \note The mode is device specific, which means that not all modes are
* implemented in all products.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[in] mode One of the \ref kvDEVICE_MODE_xxx constants,
* defining which mode to use.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvDeviceGetMode()
*/
kvStatus CANLIBAPI kvDeviceSetMode (const CanHandle hnd, int mode);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvDeviceGetMode(int hnd, out int result);</b>
*
* \source_delphi <b>function kvDeviceGetMode(hnd: canHandle; var mode: Integer): kvStatus; </b>
* \source_end
*
* The \ref kvDeviceGetMode() reads the current device's specific mode.
*
* \note The mode is device specific, which means that not all modes are
* implemented in all products.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] result A pointer to a 32-bit integer that will receive the
* \ref kvDEVICE_MODE_xxx value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvDeviceSetMode()
*/
kvStatus CANLIBAPI kvDeviceGetMode (const CanHandle hnd, int *result);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvPingRequest(int hnd, out uint requestTime);</b>
*
* \source_delphi <b>function kvPingRequest(hnd: canHandle; var requestTime: Cardinal): kvStatus; </b>
* \source_end
*
* This function sends an active ping to a device. The ping time can later be
* retrieved using \ref kvPingGetLatest().
*
* \param[in] hnd A handle to an open circuit.
* \param[out] requestTime Time of request in microseconds. Used for matching answer to request.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
kvStatus CANLIBAPI kvPingRequest (const CanHandle hnd,
unsigned int *requestTime);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvPingGetLatest(int hnd, out uint requestTime, out uint pingTime);</b>
*
* \source_delphi <b>function kvPingGetLatest(hnd: canHandle; var requestTime: Cardinal; var pingTime: Cardinal): kvStatus; </b>
* \source_end
*
* This retrieves the latest ping time issued by an earlier call to \ref kvPingRequest()
*
* \param[in] hnd A handle to an open circuit.
* \param[out] requestTime Time of request in microseconds. Used for matching answer to request.
* \param[out] pingTime Latest value of ping time in milliseconds.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*/
kvStatus CANLIBAPI kvPingGetLatest (const CanHandle hnd,
unsigned int *requestTime,
unsigned int *pingTime);
/**
* \ingroup Internal
* \anchor Internal
* \name Unimplemented internal
*
* The following are not yet implemented. Do not use it.
*
* @{
*/
//
//
//
#if defined(_CANEVT_H_)
canStatus CANLIBAPI canReadEvent (const CanHandle hnd, CanEvent *event);
#endif
/** This function is not implemented, do not use it. */
void CANLIBAPI canSetDebug(int d);
/** This function is not implemented, do not use it. */
canStatus CANLIBAPI canSetNotifyEx (const CanHandle hnd,
HANDLE event,
unsigned int flags);
/** This function is not implemented, do not use it. */
canStatus CANLIBAPI canSetTimer (const CanHandle hnd,
DWORD interval,
DWORD flags);
/** This is reserved for \ref canSetTimer() but not implemented, do not use it. */
#define canTIMER_CYCLIC 0x01
/** This is reserved for \ref canSetTimer() but not implemented, do not use it. */
#define canTIMER_EXPENSIVE 0x02
/** This function is not implemented, do not use it. */
int CANLIBAPI canSplitHandle (CanHandle hnd, int channel);
/** This function is not implemented, do not use it. */
int CANLIBAPI canOpenMultiple (DWORD bitmask, int flags);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvReadTimer(int hnd, out int time);</b>
*
* \source_delphi <b>function kvReadTimer(handle: canHandle; var time: Cardinal): kvStatus; </b>
* \source_end
*
* The \ref kvReadTimer reads the hardware clock on the specified device and returns
* the value.
*
* When the call to \ref kvReadTimer() returns, the time value is already
* obsolete. The time required for the device firmware, any intermediary buses
* (like USB,) and the operating system to return the time value is not
* defined.
*
* This call should be used instead of \ref canReadTimer() because it can return an
* error code if it fails.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] time A pointer to a 32-bit unsigned integer that will receive
* the time value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref canReadTimer(), \ref kvReadTimer64()
*/
kvStatus CANLIBAPI kvReadTimer (const CanHandle hnd, unsigned int *time);
/**
* \ingroup General
*
* \source_cs <b>static Canlib.canStatus kvReadTimer64(int hnd, out long time);</b>
*
* \source_delphi <b>function kvReadTimer64(handle: canHandle; var time: Int64): kvStatus; </b>
* \source_end
*
* The \ref kvReadTimer64 reads the hardware clock on the specified device and
* returns the value.
*
* When the call to \ref kvReadTimer64() returns, the time value is already
* obsolete. The time required for the device firmware, any intermediary buses
* (like USB,) and the operating system to return the time value is not
* defined.
*
* This call should be used instead of \ref canReadTimer() because it can return an
* error code if it fails.
*
* \param[in] hnd An open handle to a CAN channel.
* \param[out] time A pointer to a 64-bit signed integer that will receive the
* time value.
*
* \return \ref canOK (zero) if success
* \return \ref canERR_xxx (negative) if failure
*
* \sa \ref kvReadTimer(), \ref canReadTimer()
*/
kvStatus CANLIBAPI kvReadTimer64 (const CanHandle hnd, KVINT64 *time);
/** @} */
#endif
#ifdef __cplusplus
}
#endif
# include "obsolete.h"
#ifdef KVASER_EYES_ONLY
canStatus CANLIBAPI lowLevelAccess (const CanHandle hnd, void * data, int size);
#endif
#endif