openblt/Target/Demo/ARMCM4_XMC4_XMC4700_Relax_K.../Boot/Libraries/XMCLib/inc/xmc_ccu8.h

2930 lines
139 KiB
C

/**
* @file xmc_ccu8.h
* @date 2016-05-20
*
* @cond
*********************************************************************************************************************
* XMClib v2.1.12 - XMC Peripheral Driver Library
*
* Copyright (c) 2015-2017, Infineon Technologies AG
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,are permitted provided that the
* following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
* disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY,OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* To improve the quality of the software, users are encouraged to share modifications, enhancements or bug fixes with
* Infineon Technologies AG dave@infineon.com).
*********************************************************************************************************************
*
* Change History
* --------------
*
* 2015-02-20:
* - Initial <br>
* - Documentation updates <br>
*
* 2015-06-20:
* - Removed version macros and declaration of GetDriverVersion API <br>
* - Added XMC_CCU8_SLICE_LoadSelector() API, to select which compare register value has to be loaded
* during external load event.
*
* 2015-07-01:
* - In XMC_CCU8_SLICE_CHECK_INTERRUPT macro, fixed the missing item for compare match down for channel 2. <br>
*
* 2015-07-24:
* - XMC_CCU8_SLICE_ConfigureStatusBitOverrideEvent() is updated to support XMC14 device. <br>
*
* 2015-08-17:
* - XMC_CCU8_SLICE_PRESCALER_t enum is added to set the prescaler divider. <br>
* - XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_t is added for all the devices except XMC45 devices, to set when the
* shadow transfer has to happen. <br>
* - XMC_CCU8_SOURCE_OUT0_t, XMC_CCU8_SOURCE_OUT1_t, XMC_CCU8_SOURCE_OUT2_t, XMC_CCU8_SOURCE_OUT3_t enums are added
* to maps one of the ST to OUT0, OUT1, OUT3, OUT4 signals.
* - In XMC_CCU8_SLICE_COMPARE_CONFIG_t structure, selector_out0, selector_out1, selector_out2, selector_out3 are
* added to support XMC14 devices.
* - XMC_CCU8_EnableShadowTransfer() API is made as inline, to improve the speed. <br>
* - XMC_CCU8_SLICE_EnableCascadedShadowTransfer(), XMC_CCU8_SLICE_DisableCascadedShadowTransfer(),
* XMC_CCU8_SLICE_SetShadowTransferMode() API are supported for all the devices except XMC45.
*
* 2015-09-29:
* - In XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_t, two more enum items are added to support external count direction
* settings.
*
* 2015-10-07:
* - XMC_CCU8_SLICE_SetTimerCompareMatchChannel1(), XMC_CCU8_SLICE_SetTimerCompareMatchChannel2() inline APIs are
* added to update the respective compare registers directly.
* - XMC_CCU8_SLICE_GetEvent() is made as inline.
* - XMC_CCU8_SLICE_MULTI_IRQ_ID_t is added to support the XMC_CCU8_SLICE_EnableMultipleEvents() and
* XMC_CCU8_SLICE_DisableMultipleEvents() APIs.
* - DOC updates for the newly added APIs.
*
* 2016-03-09:
* - Optimization of write only registers
*
* 2016-05-20:
* - Added XMC_CCU8_SLICE_StopClearTimer()
* - Changed XMC_CCU8_SLICE_StopTimer() and XMC_CCU8_SLICE_ClearTimer()
*
* @endcond
*/
#ifndef XMC_CCU8_H
#define XMC_CCU8_H
/*********************************************************************************************************************
* HEADER FILES
********************************************************************************************************************/
#include "xmc_common.h"
#if defined(CCU80)
#if UC_FAMILY == XMC1
#include "xmc1_ccu8_map.h"
#endif
#if UC_FAMILY == XMC4
#include "xmc4_ccu8_map.h"
#endif
/**
* @addtogroup XMClib XMC Peripheral Library
* @{
*/
/**
* @addtogroup CCU8
*
* @brief Capture Compare Unit 8 (CCU8) low level driver for XMC family of microcontrollers<br>
*
* The CCU8 peripheral functions play a major role in applications that need complex Pulse Width Modulation (PWM) signal
* generation, with complementary high side and low side switches, multi phase control. These functions in conjunction
* with a very flexible and programmable signal conditioning scheme, make the CCU8 the must have peripheral for state
* of the art motor control, multi phase and multi level power electronics systems.\n
* Each CCU8 module is comprised of four identical 16 bit Capture/Compare Timer slices, CC8y (where y = [0..4]). Each
* timer slice can work in compare mode or in capture mode.
*
* APIs provided in this file cover the following functional blocks of CCU8:
* -- Timer configuration, Capture configuration, Function/Event configuration, Interrupt configuration
* \par Note:
* 1. SLICE (APIs prefixed with e.g. XMC_CCU8_SLICE_)
* 2. Module (APIs are not having any prefix e.g. XMC_CCU8_)
*
* \par Timer(Compare mode) configuration:
* This section of the LLD provides the configuration structure XMC_CCU8_SLICE_COMPARE_CONFIG_t,
* XMC_CCU8_SLICE_DEAD_TIME_CONFIG_t and the initialization functions XMC_CCU8_SLICE_CompareInit(), XMC_CCU8_SLICE_DeadTimeInit().
*
* It can be used to:
* -# Start and Stop the timer. (XMC_CCU8_SLICE_StartTimer(), XMC_CCU8_SLICE_StopTimer())
* -# Update the period, compare, Dither, Prescaler and Passive values. (XMC_CCU8_SLICE_SetTimerPeriodMatch(),
* XMC_CCU8_SLICE_SetTimerCompareMatch(), XMC_CCU8_SLICE_SetPrescaler(), XMC_CCU8_SLICE_SetDitherCompareValue(),
* XMC_CCU8_SLICE_SetPassiveLevel())
* -# Configure the dead time.(XMC_CCU8_SLICE_SetDeadTimeValue(), XMC_CCU8_SLICE_SetDeadTimePrescaler())
* -# Enable the slices to support multichannel mode. (XMC_CCU8_SLICE_EnableMultiChannelMode())
*
* \par Capture configuration:
* This section of the LLD provides the configuration structure XMC_CCU8_SLICE_CAPTURE_CONFIG_t and the initialization
* function XMC_CCU8_SLICE_CaptureInit().
*
* It can be used to:
* -# Configure the capture functionality. (XMC_CCU8_SLICE_Capture0Config(), XMC_CCU8_SLICE_Capture1Config())
* -# Read the captured values along with the status, which indicate the value is latest or not.
* (XMC_CCU8_SLICE_GetCaptureRegisterValue())
*
* \par Function/Event configuration:
* This section of the LLD provides the configuration structure XMC_CCU8_SLICE_EVENT_CONFIG_t.
*
* It can be used to:
* -# Enable and Disable the events. (XMC_CCU8_SLICE_EnableEvent(), XMC_CCU8_SLICE_DisableEvent())
* -# Configure to start and stop the timer on external events.(XMC_CCU8_SLICE_StartConfig(), XMC_CCU8_SLICE_StopConfig())
* -# Modulation, external load and Gating of the timer output.(XMC_CCU8_SLICE_ModulationConfig(),
* XMC_CCU8_SLICE_LoadConfig(), XMC_CCU8_SLICE_GateConfig())
* -# Control the count direction of the timer based on the external event. (XMC_CCU8_SLICE_DirectionConfig())
* -# Count the external events.(XMC_CCU8_SLICE_CountConfig())
* -# External Trap. Which can be used as protective feature.(XMC_CCU8_SLICE_EnableTrap(), XMC_CCU8_SLICE_DisableTrap(),
* XMC_CCU8_SLICE_TrapConfig())
*
* \par Interrupt configuration:
* This section of the LLD provides the function to configure the interrupt node to each event (XMC_CCU8_SLICE_SetInterruptNode())
*
* @{
*/
/*********************************************************************************************************************
* MACROS
********************************************************************************************************************/
#define XMC_CCU8_SLICE_CHECK_INTERRUPT(interrupt) \
((interrupt == XMC_CCU8_SLICE_IRQ_ID_PERIOD_MATCH) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_ONE_MATCH) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_UP_CH_1) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_DOWN_CH_1)|| \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_UP_CH_2) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_DOWN_CH_2)|| \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_EVENT0) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_EVENT1) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_EVENT2) || \
(interrupt == XMC_CCU8_SLICE_IRQ_ID_TRAP))
/* Macro to check if the slice ptr passed is valid */
#define XMC_CCU8_SLICE_CHECK_COMP_CHANNEL(cmp_channel) \
((cmp_channel == XMC_CCU8_SLICE_COMPARE_CHANNEL_1) || \
(cmp_channel == XMC_CCU8_SLICE_COMPARE_CHANNEL_2))
/*********************************************************************************************************************
* ENUMS
********************************************************************************************************************/
/**
* Typedef for CCU8 Global data structure
*/
typedef CCU8_GLOBAL_TypeDef XMC_CCU8_MODULE_t;
/**
* Typedef for CCU8 Slice data structure
*/
typedef CCU8_CC8_TypeDef XMC_CCU8_SLICE_t;
/**
* Return Value of an API
*/
typedef enum XMC_CCU8_STATUS
{
XMC_CCU8_STATUS_OK = 0U, /**< API fulfils request */
XMC_CCU8_STATUS_ERROR , /**< API cannot fulfil request */
XMC_CCU8_STATUS_RUNNING , /**< The timer slice is currently running */
XMC_CCU8_STATUS_IDLE /**< The timer slice is currently idle */
} XMC_CCU8_STATUS_t;
/**
* CCU8 module clock
*/
typedef enum XMC_CCU8_CLOCK
{
XMC_CCU8_CLOCK_SCU = 0U, /**< Select the fCCU as the clock */
XMC_CCU8_CLOCK_EXTERNAL_A , /**< External clock-A */
XMC_CCU8_CLOCK_EXTERNAL_B , /**< External clock-B */
XMC_CCU8_CLOCK_EXTERNAL_C /**< External clock-C */
} XMC_CCU8_CLOCK_t;
/**
* CCU8 set the shadow transfer type for multichannel mode
*/
typedef enum XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER
{
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE0 = (uint32_t)0x4000000, /**< Shadow transfer through software
only for slice 0*/
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE0 = (uint32_t)0x4000400, /**< Shadow transfer through software
and hardware for slice 0 */
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE1 = (uint32_t)0x8000000, /**< Shadow transfer through software
only for slice 1*/
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE1 = (uint32_t)0x8000800, /**< Shadow transfer through software
and hardware for slice 1 */
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE2 = (uint32_t)0x10000000, /**< Shadow transfer through software
only for slice 2 */
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE2 = (uint32_t)0x10001000, /**< Shadow transfer through software
and hardware for slice 2 */
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE3 = (uint32_t)0x20000000, /**< Shadow transfer through software
only for slice 3*/
XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE3 = (uint32_t)0x20002000 /**< Shadow transfer through software
and hardware for slice 3 */
} XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_t;
/**
* Operational modes of CCU8 slice
*/
typedef enum XMC_CCU8_SLICE_MODE
{
XMC_CCU8_SLICE_MODE_COMPARE = 0U, /**< slice(CC8y) operates in Compare Mode */
XMC_CCU8_SLICE_MODE_CAPTURE /**< slice(CC8y) operates in Capture Mode */
} XMC_CCU8_SLICE_MODE_t;
/**
* Slice Output selection
*/
typedef enum XMC_CCU8_SLICE_OUTPUT
{
XMC_CCU8_SLICE_OUTPUT_0 = 1U, /**< Slice Output-0 */
XMC_CCU8_SLICE_OUTPUT_1 = 2U, /**< Slice Output-1 */
XMC_CCU8_SLICE_OUTPUT_2 = 4U, /**< Slice Output-2 */
XMC_CCU8_SLICE_OUTPUT_3 = 8U /**< Slice Output-3 */
} XMC_CCU8_SLICE_OUTPUT_t;
/**
* Timer counting modes for the slice
*/
typedef enum XMC_CCU8_SLICE_TIMER_COUNT_MODE
{
XMC_CCU8_SLICE_TIMER_COUNT_MODE_EA = 0U, /**< Edge Aligned Mode */
XMC_CCU8_SLICE_TIMER_COUNT_MODE_CA /**< Centre Aligned Mode */
} XMC_CCU8_SLICE_TIMER_COUNT_MODE_t;
/**
* Timer repetition mode for the slice
*/
typedef enum XMC_CCU8_SLICE_TIMER_REPEAT_MODE
{
XMC_CCU8_SLICE_TIMER_REPEAT_MODE_REPEAT = 0U, /**< Repetitive mode: continuous mode of operation */
XMC_CCU8_SLICE_TIMER_REPEAT_MODE_SINGLE /**< Single shot mode: Once a Period match/One match
occurs timer goes to idle state */
} XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t;
/**
* Timer counting direction for the CCU8 slice
*/
typedef enum XMC_CCU8_SLICE_TIMER_COUNT_DIR
{
XMC_CCU8_SLICE_TIMER_COUNT_DIR_UP = 0U, /**< Counting up */
XMC_CCU8_SLICE_TIMER_COUNT_DIR_DOWN /**< Counting down */
} XMC_CCU8_SLICE_TIMER_COUNT_DIR_t;
/**
* Capture mode register sets
*/
typedef enum XMC_CCU8_SLICE_CAP_REG_SET
{
XMC_CCU8_SLICE_CAP_REG_SET_LOW = 0U, /**< Capture register-0, Capture register-1 used */
XMC_CCU8_SLICE_CAP_REG_SET_HIGH /**< Capture register-0, Capture register-1 used */
} XMC_CCU8_SLICE_CAP_REG_SET_t;
/**
* Prescaler mode
*/
typedef enum XMC_CCU8_SLICE_PRESCALER_MODE
{
XMC_CCU8_SLICE_PRESCALER_MODE_NORMAL = 0U, /**< Fixed division of module clock */
XMC_CCU8_SLICE_PRESCALER_MODE_FLOAT /**< Floating divider */
} XMC_CCU8_SLICE_PRESCALER_MODE_t;
/**
* Timer output passive level
*/
typedef enum XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL
{
XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_LOW = 0U, /**< Passive level = Low */
XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_HIGH /**< Passive level = High */
} XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t;
/**
* Compare Channel selection
*/
typedef enum XMC_CCU8_SLICE_COMPARE_CHANNEL
{
XMC_CCU8_SLICE_COMPARE_CHANNEL_1 = 0U, /**< Compare Channel-1 */
XMC_CCU8_SLICE_COMPARE_CHANNEL_2 /**< Compare Channel-2 */
} XMC_CCU8_SLICE_COMPARE_CHANNEL_t;
/**
* Timer clock Divider
*/
typedef enum XMC_CCU8_SLICE_PRESCALER
{
XMC_CCU8_SLICE_PRESCALER_1 = 0U, /**< Slice Clock = fccu8 */
XMC_CCU8_SLICE_PRESCALER_2 , /**< Slice Clock = fccu8/2 */
XMC_CCU8_SLICE_PRESCALER_4 , /**< Slice Clock = fccu8/4 */
XMC_CCU8_SLICE_PRESCALER_8 , /**< Slice Clock = fccu8/8 */
XMC_CCU8_SLICE_PRESCALER_16 , /**< Slice Clock = fccu8/16 */
XMC_CCU8_SLICE_PRESCALER_32 , /**< Slice Clock = fccu8/32 */
XMC_CCU8_SLICE_PRESCALER_64 , /**< Slice Clock = fccu8/64 */
XMC_CCU8_SLICE_PRESCALER_128 , /**< Slice Clock = fccu8/128 */
XMC_CCU8_SLICE_PRESCALER_256 , /**< Slice Clock = fccu8/256 */
XMC_CCU8_SLICE_PRESCALER_512 , /**< Slice Clock = fccu8/512 */
XMC_CCU8_SLICE_PRESCALER_1024 , /**< Slice Clock = fccu8/1024 */
XMC_CCU8_SLICE_PRESCALER_2048 , /**< Slice Clock = fccu8/2048 */
XMC_CCU8_SLICE_PRESCALER_4096 , /**< Slice Clock = fccu8/4096 */
XMC_CCU8_SLICE_PRESCALER_8192 , /**< Slice Clock = fccu8/8192 */
XMC_CCU8_SLICE_PRESCALER_16384 , /**< Slice Clock = fccu8/16384 */
XMC_CCU8_SLICE_PRESCALER_32768 /**< Slice Clock = fccu8/32768 */
} XMC_CCU8_SLICE_PRESCALER_t;
/**
* Dead Time Generator Clock Divider
*/
typedef enum XMC_CCU8_SLICE_DTC_DIV
{
XMC_CCU8_SLICE_DTC_DIV_1 = 0U, /**< DTC clock = Slice Clock */
XMC_CCU8_SLICE_DTC_DIV_2 , /**< DTC clock = Slice Clock/2 */
XMC_CCU8_SLICE_DTC_DIV_4 , /**< DTC clock = Slice Clock/4 */
XMC_CCU8_SLICE_DTC_DIV_8 /**< DTC clock = Slice Clock/8 */
} XMC_CCU8_SLICE_DTC_DIV_t;
/**
* The compare channel output which is routed to the slice output signal(STy).
*/
typedef enum XMC_CCU8_SLICE_STATUS
{
XMC_CCU8_SLICE_STATUS_CHANNEL_1 = 0U, /**< Channel-1 status connected to Slice Status */
XMC_CCU8_SLICE_STATUS_CHANNEL_2 , /**< Channel-2 status connected to Slice Status */
XMC_CCU8_SLICE_STATUS_CHANNEL_1_AND_2 , /**< \b Wired \b AND of Channel-1 and Channel-2 status connected to
Slice status */
#if ((UC_SERIES == XMC13) || (UC_SERIES == XMC14)) || defined(DOXYGEN)
XMC_CCU8_SLICE_STATUS_CHANNEL_1_OR_2 /**< \b Wired \b OR of Channel-1 and Channel-2 status connected to Slice
status. @note Only available for XMC1300 and XMC1400 series */
#endif
} XMC_CCU8_SLICE_STATUS_t;
/**
* Compare channel for which modulation has to be applied
*/
typedef enum XMC_CCU8_SLICE_MODULATION_CHANNEL
{
XMC_CCU8_SLICE_MODULATION_CHANNEL_NONE = 0U, /**< No modulation */
XMC_CCU8_SLICE_MODULATION_CHANNEL_1 , /**< Modulation for Compare Channel-1 */
XMC_CCU8_SLICE_MODULATION_CHANNEL_2 , /**< Modulation for Compare Channel-2 */
XMC_CCU8_SLICE_MODULATION_CHANNEL_1_AND_2 /**< Modulation for Compare Channel-1 and Compare Channel-2 */
} XMC_CCU8_SLICE_MODULATION_CHANNEL_t;
/**
* External Function list
*/
typedef enum XMC_CCU8_SLICE_FUNCTION
{
XMC_CCU8_SLICE_FUNCTION_START = 0U, /**< Start function */
XMC_CCU8_SLICE_FUNCTION_STOP , /**< Stop function */
XMC_CCU8_SLICE_FUNCTION_CAPTURE_EVENT0 , /**< Capture Event-0 function, CCycapt0 signal is used for event
generation */
XMC_CCU8_SLICE_FUNCTION_CAPTURE_EVENT1 , /**< Capture Event-1 function, CCycapt1 signal is used for event
generation */
XMC_CCU8_SLICE_FUNCTION_GATING , /**< Gating function */
XMC_CCU8_SLICE_FUNCTION_DIRECTION , /**< Direction function */
XMC_CCU8_SLICE_FUNCTION_LOAD , /**< Load function */
XMC_CCU8_SLICE_FUNCTION_COUNT , /**< Counting function */
XMC_CCU8_SLICE_FUNCTION_OVERRIDE , /**< Override function */
XMC_CCU8_SLICE_FUNCTION_MODULATION , /**< Modulation function */
XMC_CCU8_SLICE_FUNCTION_TRAP /**< Trap function */
} XMC_CCU8_SLICE_FUNCTION_t;
/**
* External Event list
*/
typedef enum XMC_CCU8_SLICE_EVENT
{
XMC_CCU8_SLICE_EVENT_NONE = 0U, /**< None */
XMC_CCU8_SLICE_EVENT_0 , /**< Event-0 */
XMC_CCU8_SLICE_EVENT_1 , /**< Event-1 */
XMC_CCU8_SLICE_EVENT_2 /**< Event-2 */
} XMC_CCU8_SLICE_EVENT_t;
/**
* External Event trigger criteria - Edge sensitivity
*/
typedef enum XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY
{
XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_NONE = 0U, /**< None */
XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_RISING_EDGE , /**< Rising Edge of the input signal generates
event trigger */
XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_FALLING_EDGE , /**< Falling Edge of the input signal generates event
trigger */
XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_DUAL_EDGE /**< Both Rising and Falling edges cause an event trigger */
} XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_t;
/**
* External Event trigger criteria - Level sensitivity
*/
typedef enum XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY
{
XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH = 0U, /**< Level sensitive functions react to a high signal level*/
XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_LOW = 1U, /**< Level sensitive functions react to a low signal level */
/* Below enum items can be utilised specific to the functionality */
XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_COUNT_UP_ON_LOW = 0U, /**< Timer counts up, during Low state of the control signal */
XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_COUNT_UP_ON_HIGH = 1U /**< Timer counts up, during High state of the control signal */
} XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_t;
/**
* Low pass filter Configuration. The External Event input should be stable for a selected number of clock cycles.
*/
typedef enum XMC_CCU8_SLICE_EVENT_FILTER
{
XMC_CCU8_SLICE_EVENT_FILTER_DISABLED = 0U, /**< No Low Pass Filtering is applied */
XMC_CCU8_SLICE_EVENT_FILTER_3_CYCLES , /**< Input should be stable for 3 clock cycles */
XMC_CCU8_SLICE_EVENT_FILTER_5_CYCLES , /**< Input should be stable for 5 clock cycles */
XMC_CCU8_SLICE_EVENT_FILTER_7_CYCLES /**< Input should be stable for 7 clock cycles */
} XMC_CCU8_SLICE_EVENT_FILTER_t;
/**
* External Event Input list. This list depicts the possible input connections to the CCU8 slice.
* Interconnects are specific to each device.
*/
typedef uint8_t XMC_CCU8_SLICE_INPUT_t;
/**
* Actions that can be performed upon detection of an external Timer STOP event
*/
typedef enum XMC_CCU8_SLICE_END_MODE
{
XMC_CCU8_SLICE_END_MODE_TIMER_STOP = 0U, /**< Stops the timer, without clearing TIMER register */
XMC_CCU8_SLICE_END_MODE_TIMER_CLEAR , /**< Without stopping timer, clears the TIMER register */
XMC_CCU8_SLICE_END_MODE_TIMER_STOP_CLEAR /**< Stops the timer and clears the TIMER register */
} XMC_CCU8_SLICE_END_MODE_t;
/**
* Actions that can be performed upon detection of an external Timer START event
*/
typedef enum XMC_CCU8_SLICE_START_MODE
{
XMC_CCU8_SLICE_START_MODE_TIMER_START = 0U, /**< Start the timer from the current count of TIMER register */
XMC_CCU8_SLICE_START_MODE_TIMER_START_CLEAR /**< Clears the TIMER register and start the timer */
} XMC_CCU8_SLICE_START_MODE_t;
/**
* Modulation of timer output signals
*/
typedef enum XMC_CCU8_SLICE_MODULATION_MODE
{
XMC_CCU8_SLICE_MODULATION_MODE_CLEAR_ST_OUT = 0U, /**< Clear ST and OUT signals */
XMC_CCU8_SLICE_MODULATION_MODE_CLEAR_OUT /**< Clear only the OUT signal */
} XMC_CCU8_SLICE_MODULATION_MODE_t;
/**
* Trap exit mode
*/
typedef enum XMC_CCU8_SLICE_TRAP_EXIT_MODE
{
XMC_CCU8_SLICE_TRAP_EXIT_MODE_AUTOMATIC = 0U, /**< Clear trap state as soon as the trap signal is de-asserted */
XMC_CCU8_SLICE_TRAP_EXIT_MODE_SW /**< Clear only when acknowledged by software */
} XMC_CCU8_SLICE_TRAP_EXIT_MODE_t;
/**
* Timer clear on capture
*/
typedef enum XMC_CCU8_SLICE_TIMER_CLEAR_MODE
{
XMC_CCU8_SLICE_TIMER_CLEAR_MODE_NEVER = 0U, /**< Never clear the timer on any capture event */
XMC_CCU8_SLICE_TIMER_CLEAR_MODE_CAP_HIGH , /**< Clear only when timer value has been captured in C3V and C2V */
XMC_CCU8_SLICE_TIMER_CLEAR_MODE_CAP_LOW , /**< Clear only when timer value has been captured in C1V and C0V */
XMC_CCU8_SLICE_TIMER_CLEAR_MODE_ALWAYS /**< Always clear the timer upon detection of any capture event */
} XMC_CCU8_SLICE_TIMER_CLEAR_MODE_t;
/**
* Multi Channel Shadow transfer request configuration options
*/
typedef enum XMC_CCU8_SLICE_MCMS_ACTION
{
XMC_CCU8_SLICE_MCMS_ACTION_TRANSFER_PR_CR = 0U, /**< Transfer Compare and Period Shadow register values to
the actual registers upon MCS xfer request */
XMC_CCU8_SLICE_MCMS_ACTION_TRANSFER_PR_CR_PCMP = 1U, /**< Transfer Compare, Period and Prescaler Compare Shadow
register values to the actual registers upon MCS xfer
request */
XMC_CCU8_SLICE_MCMS_ACTION_TRANSFER_PR_CR_PCMP_DIT = 3U /**< Transfer Compare, Period ,Prescaler Compare and Dither
Compare register values to the actual registers upon
MCS xfer request */
} XMC_CCU8_SLICE_MCMS_ACTION_t;
/**
* Available Interrupt Event Ids
*/
typedef enum XMC_CCU8_SLICE_IRQ_ID
{
XMC_CCU8_SLICE_IRQ_ID_PERIOD_MATCH = 0U , /**< Period match counting up */
XMC_CCU8_SLICE_IRQ_ID_ONE_MATCH = 1U , /**< One match counting down */
XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_UP_CH_1 = 2U , /**< Compare match counting up for channel 1 */
XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_DOWN_CH_1 = 3U , /**< Compare match counting down for channel 1 */
XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_UP_CH_2 = 4U , /**< Compare match counting up for channel 2 */
XMC_CCU8_SLICE_IRQ_ID_COMPARE_MATCH_DOWN_CH_2 = 5U , /**< Compare match counting down for channel 2 */
XMC_CCU8_SLICE_IRQ_ID_EVENT0 = 8U , /**< Event-0 occurrence */
XMC_CCU8_SLICE_IRQ_ID_EVENT1 = 9U , /**< Event-1 occurrence */
XMC_CCU8_SLICE_IRQ_ID_EVENT2 = 10U, /**< Event-2 occurrence */
XMC_CCU8_SLICE_IRQ_ID_TRAP = 11U /**< Trap occurrence */
} XMC_CCU8_SLICE_IRQ_ID_t;
/**
* Available Interrupt Event Ids, which is added to support multi event APIs
*/
typedef enum XMC_CCU8_SLICE_MULTI_IRQ_ID
{
XMC_CCU8_SLICE_MULTI_IRQ_ID_PERIOD_MATCH = 0x1U, /**< Period match counting up */
XMC_CCU8_SLICE_MULTI_IRQ_ID_ONE_MATCH = 0x2U, /**< One match counting down */
XMC_CCU8_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_UP_CH_1 = 0x4U, /**< Compare match counting up for channel 1 */
XMC_CCU8_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_DOWN_CH_1 = 0x8U, /**< Compare match counting down for channel 1 */
XMC_CCU8_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_UP_CH_2 = 0x10U, /**< Compare match counting up for channel 2 */
XMC_CCU8_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_DOWN_CH_2 = 0x20U, /**< Compare match counting down for channel 2 */
XMC_CCU8_SLICE_MULTI_IRQ_ID_EVENT0 = 0x100U, /**< Event-0 occurrence */
XMC_CCU8_SLICE_MULTI_IRQ_ID_EVENT1 = 0x200U, /**< Event-1 occurrence */
XMC_CCU8_SLICE_MULTI_IRQ_ID_EVENT2 = 0x400U, /**< Event-2 occurrence */
} XMC_CCU8_SLICE_MULTI_IRQ_ID_t;
/**
* Service Request Lines for CCU8. Event are mapped to these SR lines and these are used to generate the interrupt.
*/
typedef enum XMC_CCU8_SLICE_SR_ID
{
XMC_CCU8_SLICE_SR_ID_0 = 0U, /**< Service Request Line-0 selected */
XMC_CCU8_SLICE_SR_ID_1 , /**< Service Request Line-1 selected */
XMC_CCU8_SLICE_SR_ID_2 , /**< Service Request Line-2 selected */
XMC_CCU8_SLICE_SR_ID_3 /**< Service Request Line-3 selected */
} XMC_CCU8_SLICE_SR_ID_t;
/**
* Slice shadow transfer options.
*/
typedef enum XMC_CCU8_SHADOW_TRANSFER
{
XMC_CCU8_SHADOW_TRANSFER_SLICE_0 = CCU8_GCSS_S0SE_Msk, /**< Transfer Period, Compare and Passive Level
shadow register values to actual registers for
SLICE-0 */
XMC_CCU8_SHADOW_TRANSFER_DITHER_SLICE_0 = CCU8_GCSS_S0DSE_Msk, /**< Transfer Dither compare shadow register value
to actual register for SLICE-0 */
XMC_CCU8_SHADOW_TRANSFER_PRESCALER_SLICE_0 = CCU8_GCSS_S0PSE_Msk, /**< Transfer Prescaler shadow register value to
actual register for SLICE-0 */
XMC_CCU8_SHADOW_TRANSFER_SLICE_1 = CCU8_GCSS_S1SE_Msk, /**< Transfer Period, Compare and Passive Level
shadow register values to actual registers for
SLICE-1 */
XMC_CCU8_SHADOW_TRANSFER_DITHER_SLICE_1 = CCU8_GCSS_S1DSE_Msk, /**< Transfer Dither compare shadow register value
to actual registers for SLICE-1 */
XMC_CCU8_SHADOW_TRANSFER_PRESCALER_SLICE_1 = CCU8_GCSS_S1PSE_Msk, /**< Transfer Prescaler shadow register value to
actual register for SLICE-1 */
XMC_CCU8_SHADOW_TRANSFER_SLICE_2 = CCU8_GCSS_S2SE_Msk, /**< Transfer Period, Compare and Passive Level
shadow register values to actual registers for
SLICE-2 */
XMC_CCU8_SHADOW_TRANSFER_DITHER_SLICE_2 = CCU8_GCSS_S2DSE_Msk, /**< Transfer Dither compare shadow register value
to actual register for SLICE-2 */
XMC_CCU8_SHADOW_TRANSFER_PRESCALER_SLICE_2 = CCU8_GCSS_S2PSE_Msk, /**< Transfer Prescaler shadow register value to
actual register for SLICE-2 */
XMC_CCU8_SHADOW_TRANSFER_SLICE_3 = CCU8_GCSS_S3SE_Msk, /**< Transfer Period, Compare and Passive Level
shadow register values to actual registers for
SLICE-3 */
XMC_CCU8_SHADOW_TRANSFER_DITHER_SLICE_3 = CCU8_GCSS_S3DSE_Msk, /**< Transfer Dither compare shadow register value
to actual register for SLICE-3 */
XMC_CCU8_SHADOW_TRANSFER_PRESCALER_SLICE_3 = CCU8_GCSS_S3PSE_Msk /**< Transfer Prescaler shadow register value to
actual register for SLICE-3 */
} XMC_CCU8_SHADOW_TRANSFER_t;
#if (UC_SERIES != XMC45) || defined(DOXYGEN)
/**
* Slice shadow transfer mode options.
* @note Not available for XMC4500 series
*/
typedef enum XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE
{
XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_IN_PERIOD_MATCH_AND_ONE_MATCH = 0U, /**< Shadow transfer is done in Period Match and
One match. */
XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_ONLY_IN_PERIOD_MATCH = 1U, /**< Shadow transfer is done only in Period Match. */
XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_ONLY_IN_ONE_MATCH = 2U /**< Shadow transfer is done only in One Match. */
} XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_t;
#endif
#if defined(CCU8V3) || defined(DOXYGEN) /* Defined for XMC1400 devices only */
/**
* Output sources for OUTy0 signal
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SOURCE_OUT0
{
XMC_CCU8_SOURCE_OUT0_ST1 = (uint32_t)0x0, /**< CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_SOURCE_OUT0_INV_ST1 = (uint32_t)0x1, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_SOURCE_OUT0_ST2 = (uint32_t)0x2, /**< CCU8yST2 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_SOURCE_OUT0_INV_ST2 = (uint32_t)0x3 /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT0 */
} XMC_CCU8_SOURCE_OUT0_t;
/**
* Output sources for OUTy1 signal
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SOURCE_OUT1
{
XMC_CCU8_SOURCE_OUT1_ST1 = (uint32_t)0x1, /**< CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_SOURCE_OUT1_INV_ST1 = (uint32_t)0x0, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_SOURCE_OUT1_ST2 = (uint32_t)0x3, /**< CCU8yST2 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_SOURCE_OUT1_INV_ST2 = (uint32_t)0x2 /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT1 */
} XMC_CCU8_SOURCE_OUT1_t;
/**
* Output sources for OUTy2 signal
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SOURCE_OUT2
{
XMC_CCU8_SOURCE_OUT2_ST2 = (uint32_t)0x0, /**< CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT2_INV_ST2 = (uint32_t)0x1, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT2_ST1 = (uint32_t)0x2, /**< CCU8yST1 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT2_INV_ST1 = (uint32_t)0x3 /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT2 */
} XMC_CCU8_SOURCE_OUT2_t;
/**
* Output sources for OUTy3 signal
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SOURCE_OUT3
{
XMC_CCU8_SOURCE_OUT3_ST2 = (uint32_t)0x1, /**< CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT3_INV_ST2 = (uint32_t)0x0, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT3_ST1 = (uint32_t)0x3, /**< CCU8yST1 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_SOURCE_OUT3_INV_ST1 = (uint32_t)0x2 /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT2 */
} XMC_CCU8_SOURCE_OUT3_t;
#endif
/**
* Output selector for CCU8x.OUT0-3
*/
#if !defined(CCU8V3) /* Defined for all devices except XMC1400 */
typedef enum XMC_CCU8_OUT_PATH
{
XMC_CCU8_OUT_PATH_OUT0_ST1 = (uint32_t)0x20000, /**< CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_OUT_PATH_OUT0_INV_ST1 = (uint32_t)0x20002, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_OUT_PATH_OUT1_ST1 = (uint32_t)0x40000, /**< CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_OUT_PATH_OUT1_INV_ST1 = (uint32_t)0x40004, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_OUT_PATH_OUT2_ST2 = (uint32_t)0x80000, /**< CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_OUT_PATH_OUT2_INV_ST2 = (uint32_t)0x80008, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_OUT_PATH_OUT3_ST2 = (uint32_t)0x100000,/**< CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_OUT_PATH_OUT3_INV_ST1 = (uint32_t)0x100010 /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT3 */
} XMC_CCU8_OUT_PATH_t;
#else
typedef enum XMC_CCU8_OUT_PATH
{
XMC_CCU8_OUT_PATH_OUT0_ST1 = (uint32_t)0x000C0, /**< CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_OUT_PATH_OUT0_INV_ST1 = (uint32_t)0x000D0, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT0 */
XMC_CCU8_OUT_PATH_OUT0_ST2 = (uint32_t)0x000E0, /**< CCU8yST2 signal path is connected the CCU8x.OUT0. @note Only available for XMC1400 series*/
XMC_CCU8_OUT_PATH_OUT0_INV_ST2 = (uint32_t)0x000F0, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT0. @note Only available for XMC1400 series*/
XMC_CCU8_OUT_PATH_OUT1_ST1 = (uint32_t)0x00D00, /**< CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_OUT_PATH_OUT1_INV_ST1 = (uint32_t)0x00C00, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT1 */
XMC_CCU8_OUT_PATH_OUT1_ST2 = (uint32_t)0x00F00, /**< CCU8yST2 signal path is connected the CCU8x.OUT1. @note Only available for XMC1400 series*/
XMC_CCU8_OUT_PATH_OUT1_INV_ST2 = (uint32_t)0x00E00, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT1. @note Only available for XMC1400 series */
XMC_CCU8_OUT_PATH_OUT2_ST2 = (uint32_t)0x0C000, /**< CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_OUT_PATH_OUT2_INV_ST2 = (uint32_t)0x0D000, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT2 */
XMC_CCU8_OUT_PATH_OUT2_ST1 = (uint32_t)0x0E000, /**< CCU8yST1 signal path is connected the CCU8x.OUT2. @note Only available for XMC1400 series*/
XMC_CCU8_OUT_PATH_OUT2_INV_ST1 = (uint32_t)0x0F000, /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT2.@note Only available for XMC1400 series */
XMC_CCU8_OUT_PATH_OUT3_ST2 = (uint32_t)0xD0000, /**< CCU8yST2 signal path is connected the CCU8x.OUT3 */
XMC_CCU8_OUT_PATH_OUT3_INV_ST2 = (uint32_t)0xC0000, /**< Inverted CCU8yST2 signal path is connected the CCU8x.OUT3.@note Only available for XMC1400 series */
XMC_CCU8_OUT_PATH_OUT3_ST1 = (uint32_t)0xF0000, /**< CCU8yST1 signal path is connected the CCU8x.OUT3.@note Only available for XMC1400 series */
XMC_CCU8_OUT_PATH_OUT3_INV_ST1 = (uint32_t)0xE0000 /**< Inverted CCU8yST1 signal path is connected the CCU8x.OUT3 */
} XMC_CCU8_OUT_PATH_t;
/**
* Immediate write into configuration register
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SLICE_WRITE_INTO
{
XMC_CCU8_SLICE_WRITE_INTO_PERIOD_CONFIGURATION = CCU8_CC8_STC_IRPC_Msk, /**< Immediate or Coherent
Write into Period
Configuration */
XMC_CCU8_SLICE_WRITE_INTO_COMPARE1_CONFIGURATION = CCU8_CC8_STC_IRCC1_Msk, /**< Immediate or Coherent
Write into Compare 1
Configuration */
XMC_CCU8_SLICE_WRITE_INTO_COMPARE2_CONFIGURATION = CCU8_CC8_STC_IRCC2_Msk, /**< Immediate or Coherent
Write into Compare 2
Configuration */
XMC_CCU8_SLICE_WRITE_INTO_PASSIVE_LEVEL_CONFIGURATION = CCU8_CC8_STC_IRLC_Msk, /**< Immediate or Coherent
Write into Passive Level
Configuration */
XMC_CCU8_SLICE_WRITE_INTO_DITHER_VALUE_CONFIGURATION = CCU8_CC8_STC_IRDC_Msk, /**< Immediate or Coherent
Write into Dither Value
Configuration */
XMC_CCU8_SLICE_WRITE_INTO_FLOATING_PRESCALER_VALUE_CONFIGURATION = CCU8_CC8_STC_IRFC_Msk /**< Immediate or Coherent
Write into Floating Prescaler
Value Configuration */
} XMC_CCU8_SLICE_WRITE_INTO_t;
/**
* Automatic Shadow Transfer request when writing into shadow register
* @note Only available for XMC1400 series
*/
typedef enum XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO
{
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_PERIOD_SHADOW = CCU8_CC8_STC_ASPC_Msk, /**< Automatic Shadow
Transfer request when
writing into Period
Shadow Register */
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_COMPARE1_SHADOW = CCU8_CC8_STC_ASCC1_Msk, /**< Automatic Shadow
transfer request
when writing into
Compare 1 Shadow Register */
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_COMPARE2_SHADOW = CCU8_CC8_STC_ASCC2_Msk, /**< Automatic Shadow
transfer request
when writing into
Compare 2 Shadow Register */
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_PASSIVE_LEVEL = CCU8_CC8_STC_ASLC_Msk, /**< Automatic Shadow transfer
request when writing
into Passive Level Register*/
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_DITHER_SHADOW = CCU8_CC8_STC_ASDC_Msk, /**< Automatic Shadow transfer
request when writing
into Dither Shadow Register */
XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_FLOATING_PRESCALER_SHADOW = CCU8_CC8_STC_ASFC_Msk /**< Automatic Shadow transfer
request when writing
into Floating Prescaler Shadow
register */
} XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t;
#endif
/**
* CCU8 slice mask which can be used for the APIs as input where multi slice support is available
*/
typedef enum XMC_CCU8_SLICE_MASK
{
XMC_CCU8_SLICE_MASK_SLICE_0 = 1U , /**< SLICE-0 */
XMC_CCU8_SLICE_MASK_SLICE_1 = 2U , /**< SLICE-1 */
XMC_CCU8_SLICE_MASK_SLICE_2 = 4U , /**< SLICE-2 */
XMC_CCU8_SLICE_MASK_SLICE_3 = 8U /**< SLICE-3 */
} XMC_CCU8_SLICE_MASK_t;
/*********************************************************************************************************************
* DATA STRUCTURES
********************************************************************************************************************/
/**
* Configuration data structure of an External Event(Event-0/1/2).
* Needed to configure the various aspects of an External Event.
* This structure will not connect the external event with an external function.
*/
typedef struct XMC_CCU8_SLICE_EVENT_CONFIG
{
XMC_CCU8_SLICE_INPUT_t mapped_input; /**< Required input signal for the Event. */
XMC_CCU8_SLICE_EVENT_EDGE_SENSITIVITY_t edge; /**< Select the event edge of the input signal.
This is needed for an edge sensitive External function.*/
XMC_CCU8_SLICE_EVENT_LEVEL_SENSITIVITY_t level; /**< Select the event level of the input signal.
This is needed for an level sensitive External function.*/
XMC_CCU8_SLICE_EVENT_FILTER_t duration; /**< Low Pass filter duration in terms of fCCU clock cycles. */
} XMC_CCU8_SLICE_EVENT_CONFIG_t;
/*Anonymous structure/union guard start*/
#if defined(__CC_ARM)
#pragma push
#pragma anon_unions
#elif defined(__TASKING__)
#pragma warning 586
#endif
/**
* Dead Time configuration
*/
typedef struct XMC_CCU8_SLICE_DEAD_TIME_CONFIG
{
union
{
struct
{
uint32_t enable_dead_time_channel1 : 1; /**< Enable dead time for Compare Channel-1 */
uint32_t enable_dead_time_channel2 : 1; /**< Enable dead time for Compare Channel-2 */
uint32_t channel1_st_path : 1; /**< Should dead time be applied to ST output of Compare Channel-1? */
uint32_t channel1_inv_st_path : 1; /**< Should dead time be applied to inverse ST output of
Compare Channel-1? */
uint32_t channel2_st_path : 1; /**< Should dead time be applied to ST output of Compare Channel-2? */
uint32_t channel2_inv_st_path : 1; /**< Should dead time be applied to inverse ST output of
Compare Channel-2? */
uint32_t div : 2; /**< Dead time prescaler divider value.
Accepts enum ::XMC_CCU8_SLICE_DTC_DIV_t*/
uint32_t : 24;
};
uint32_t dtc;
};
union
{
struct
{
uint32_t channel1_st_rising_edge_counter : 8; /**< Contains the delay value that is applied to the rising edge
for compare channel-1. Range: [0x0 to 0xFF] */
uint32_t channel1_st_falling_edge_counter : 8; /**< Contains the delay value that is applied to the falling edge
for compare channel-1. Range: [0x0 to 0xFF] */
uint32_t : 16;
};
uint32_t dc1r;
};
union
{
struct
{
uint32_t channel2_st_rising_edge_counter : 8; /**< Contains the delay value that is applied to the rising edge
for compare channel-2. Range: [0x0 to 0xFF]*/
uint32_t channel2_st_falling_edge_counter : 8; /**< Contains the delay value that is applied to the falling edge
for compare channel-2. Range: [0x0 to 0xFF]*/
uint32_t : 16;
};
uint32_t dc2r;
};
} XMC_CCU8_SLICE_DEAD_TIME_CONFIG_t;
/**
* Configuration data structure for CCU8 slice. Specifically configures the CCU8 slice to compare mode operation.
* This excludes event and function configuration.
*/
typedef struct XMC_CCU8_SLICE_COMPARE_CONFIG
{
union
{
struct
{
uint32_t timer_mode : 1; /**< Edge aligned or Centre Aligned.
Accepts enum :: XMC_CCU8_SLICE_TIMER_COUNT_MODE_t */
uint32_t monoshot : 1; /**< Single shot or Continuous mode .
Accepts enum :: XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t */
uint32_t shadow_xfer_clear : 1; /**< Should PR and CR shadow xfer happen when timer is cleared? */
uint32_t : 10;
uint32_t dither_timer_period: 1; /**< Can the period of the timer dither? */
uint32_t dither_duty_cycle : 1; /**< Can the compare match of the timer dither? */
uint32_t : 1;
uint32_t prescaler_mode: 1; /**< Normal or floating prescaler mode.
Accepts enum :: XMC_CCU8_SLICE_PRESCALER_MODE_t */
uint32_t : 8;
uint32_t mcm_ch1_enable : 1; /**< Multi-Channel mode for compare channel 1 enable? */
uint32_t mcm_ch2_enable : 1; /**< Multi-Channel mode for compare channel 2 enable? */
uint32_t : 2;
uint32_t slice_status : 2; /**< Which of the two channels drives the slice status output.
Accepts enum :: XMC_CCU8_SLICE_STATUS_t*/
uint32_t : 1;
};
uint32_t tc;
};
union
{
struct
{
uint32_t passive_level_out0 : 1; /**< ST and OUT passive levels Configuration for OUT0.
Accepts enum :: XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t */
uint32_t passive_level_out1 : 1; /**< ST and OUT passive levels Configuration for OUT1.
Accepts enum :: XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t */
uint32_t passive_level_out2 : 1; /**< ST and OUT passive levels Configuration for OUT2.
Accepts enum :: XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t */
uint32_t passive_level_out3 : 1; /**< ST and OUT passive levels Configuration for OUT3.
Accepts enum :: XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t */
uint32_t : 28;
};
uint32_t psl;
};
union
{
struct
{
uint32_t asymmetric_pwm : 1; /**< Should the PWM be a function of the 2 compare channels
rather than period value? */
#if !defined(CCU8V3) /* Defined for all devices except XMC1400 */
uint32_t invert_out0 : 1; /**< Should inverted ST of Channel-1 be connected to OUT0? */
uint32_t invert_out1 : 1; /**< Should inverted ST of Channel-1 be connected to OUT1? */
uint32_t invert_out2 : 1; /**< Should inverted ST of Channel-2 be connected to OUT2? */
uint32_t invert_out3 : 1; /**< Should inverted ST of Channel-2 be connected to OUT3? */
uint32_t : 27;
#else
uint32_t : 3;
uint32_t selector_out0 : 2; /**< Connect ST or inverted ST of Channel-1 or Channel-2 be to OUT0
Accepts enum :: XMC_CCU8_SOURCE_OUT0_t
refer OCS1 bit-field of CHC register.
@note Only available for XMC1400 series */
uint32_t : 2;
uint32_t selector_out1 : 2; /**< Connect ST or inverted ST of Channel-1 or Channel-2 be to OUT1
Accepts enum :: XMC_CCU8_SOURCE_OUT1_t
refer OCS2 bit-field of CHC register.
@note Only available for XMC1400 series */
uint32_t : 2;
uint32_t selector_out2 : 2; /**< Connect ST or inverted ST of Channel-1 or Channel-2 be to OUT2
Accepts enum :: XMC_CCU8_SOURCE_OUT2_t
refer OCS3 bit-field of CHC register.
@note Only available for XMC1400 series */
uint32_t : 2;
uint32_t selector_out3 : 2; /**< Connect ST or inverted ST of Channel-1 or Channel-2 be to OUT3
Accepts enum :: XMC_CCU8_SOURCE_OUT3_t
refer OCS4 bit-field of CHC register.
@note Only available for XMC1400 series */
uint32_t : 14;
#endif
};
uint32_t chc;
};
uint32_t prescaler_initval : 4; /**< Initial prescaler divider value
Accepts enum :: XMC_CCU8_SLICE_PRESCALER_t */
uint32_t float_limit : 4; /**< The max value which the prescaler divider can increment to.
Range : [0 to 15] */
uint32_t dither_limit : 4; /**< The value that determines the spreading of dithering
Range : [0 to 15] */
uint32_t timer_concatenation : 1; /**< Enables the concatenation of the timer if true*/
} XMC_CCU8_SLICE_COMPARE_CONFIG_t;
/**
* Configuration data structure for CCU8 slice. Specifically configures the CCU8 slice to capture mode operation.
* This excludes event and function configuration.
*/
typedef struct XMC_CCU8_SLICE_CAPTURE_CONFIG
{
union
{
struct
{
uint32_t : 4;
uint32_t fifo_enable : 1; /**< Should the capture registers be setup as a FIFO?(Extended capture mode) */
uint32_t timer_clear_mode : 2; /**< How should the timer register be cleared upon detection of capture event?
Accepts enum ::XMC_CCU8_SLICE_TIMER_CLEAR_MODE_t */
uint32_t : 4;
uint32_t same_event : 1; /**< Should the capture event for C1V/C0V and C3V/C2V be same capture edge? */
uint32_t ignore_full_flag : 1; /**< Should updates to capture registers follow full flag rules? */
uint32_t : 3;
uint32_t prescaler_mode: 1; /**< Normal or floating prescaler Accepts enum :: XMC_CCU8_SLICE_PRESCALER_MODE_t*/
uint32_t : 15;
};
uint32_t tc;
};
uint32_t prescaler_initval : 4; /**< Prescaler divider value */
uint32_t float_limit : 4; /**< The max value which the prescaler divider can increment to */
uint32_t timer_concatenation : 1; /**< Enables the concatenation of the timer */
} XMC_CCU8_SLICE_CAPTURE_CONFIG_t;
/*Anonymous structure/union guard end*/
#if defined(__CC_ARM)
#pragma pop
#elif defined(__TASKING__)
#pragma warning restore
#endif
/*********************************************************************************************************************
* API Prototypes
********************************************************************************************************************/
#ifdef __cplusplus
extern "C" {
#endif
__STATIC_INLINE bool XMC_CCU8_IsValidModule(const XMC_CCU8_MODULE_t *const module)
{
bool tmp = false;
tmp = (module == CCU80);
#if defined(CCU81)
tmp = tmp || (module == CCU81);
#endif
return tmp;
}
__STATIC_INLINE bool XMC_CCU8_IsValidSlice(const XMC_CCU8_SLICE_t *const slice)
{
bool tmp = false;
tmp = (slice == CCU80_CC80);
#if defined(CCU80_CC81)
tmp = tmp || (slice == CCU80_CC81);
#endif
#if defined(CCU80_CC82)
tmp = tmp || (slice == CCU80_CC82);
#endif
#if defined(CCU80_CC83)
tmp = tmp || (slice == CCU80_CC83);
#endif
#if defined(CCU81)
tmp = tmp || (slice == CCU81_CC80);
#if defined(CCU81_CC81)
tmp = tmp || (slice == CCU81_CC81);
#endif
#if defined(CCU81_CC82)
tmp = tmp || (slice == CCU81_CC82);
#endif
#if defined(CCU81_CC83)
tmp = tmp || (slice == CCU81_CC83);
#endif
#endif
return tmp;
}
/**
* @param module Constant pointer to CCU8 module
* @param mcs_action multi-channel shadow transfer request configuration
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Initialization of global register GCTRL.\n\n
* As part of module initialization, behaviour of the module upon detection
* Multi-Channel Mode trigger is configured. Will also invoke the XMC_CCU8_EnableModule().
* The API call would bring up the required CCU8 module and also initialize the module for
* the required multi-channel shadow transfer.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_CompareInit()<BR> XMC_CCU8_SLICE_CaptureInit().
*/
void XMC_CCU8_Init(XMC_CCU8_MODULE_t *const module, const XMC_CCU8_SLICE_MCMS_ACTION_t mcs_action);
/**
* @param module Constant pointer to CCU8 module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the CCU8 module and brings it to active state.\n\n
* Also disables the gating of the clock signal (if applicable depending on the device being selected).
* Invoke this API before any operations are done on the CCU8 module. Invoked from XMC_CCU8_Init().
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SetModuleClock()<BR> XMC_CCU8_DisableModule()<BR> XMC_CCU8_StartPrescaler().
*/
void XMC_CCU8_EnableModule(XMC_CCU8_MODULE_t *const module);
/**
* @param module Constant pointer to CCU8 module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Brings the CCU8 module to reset state and enables gating of the clock signal(if applicable depending
* on the device being selected).\n\n
* Invoke this API when a CCU8 module needs to be disabled completely.
* Any operation on the CCU8 module will have no effect after this API is called.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableModule()<BR> XMC_CCU8_DisableModule().
*/
void XMC_CCU8_DisableModule(XMC_CCU8_MODULE_t *const module);
/**
* @param module Constant pointer to CCU8 module
* @param clock Choice of input clock to the module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Selects the Module Clock by configuring GCTRL.PCIS bits.\n\n
* There are 3 potential clock sources. This API helps to select the required clock source.
* Call to this API is valid after the XMC_CCU8_Init().
*
* \par<b>Related APIs:</b><br>
* None.<BR>
*/
void XMC_CCU8_SetModuleClock(XMC_CCU8_MODULE_t *const module, const XMC_CCU8_CLOCK_t clock);
/**
* @param module Constant pointer to CCU8 module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Starts the prescaler and restores clocks to the timer slices, by setting GIDLC.SPRB bit.<br>\n
* Once the input to the prescaler has been chosen and the prescaler divider of all slices programmed,
* the prescaler itself may be started. Invoke this API after XMC_CCU8_Init()
* (Mandatory to fully initialize the module).
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_Init()<BR> XMC_CCU8_EnableClock()<BR> XMC_CCU8_DisableClock()<BR> XMC_CCU8_StartPrescaler()<BR>
* XMC_CCU8_StopPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_StartPrescaler(XMC_CCU8_MODULE_t *const module)
{
XMC_ASSERT("XMC_CCU8_StartPrescaler:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
module->GIDLC |= (uint32_t) CCU8_GIDLC_SPRB_Msk;
}
/**
* @param module Constant pointer to CCU8 module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Stops the prescaler and blocks clocks to the timer slices, by setting GIDLS.CPRB bit.\n\n
* Clears the run bit of the prescaler. Ensures that the module clock is not supplied to
* the slices of the module.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableClock()<BR> XMC_CCU8_DisableClock()<BR> XMC_CCU8_StartPrescaler()<BR> XMC_CCU8_StopPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_StopPrescaler(XMC_CCU8_MODULE_t *const module)
{
XMC_ASSERT("XMC_CCU8_StopPrescaler:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
module->GIDLS |= (uint32_t) CCU8_GIDLS_CPRB_Msk;
}
/**
* @param module Constant pointer to CCU8 module
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Returns the state of the prescaler, by reading GSTAT.PRB bit.\n\n
* If clock is being supplied to the slices of the module then returns as true.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_StartPrescaler()<BR> XMC_CCU8_StopPrescaler()<BR> XMC_CCU8_EnableClock()<BR> XMC_CCU8_DisableClock().
*/
__STATIC_INLINE bool XMC_CCU8_IsPrescalerRunning(XMC_CCU8_MODULE_t *const module)
{
XMC_ASSERT("XMC_CCU8_IsPrescalerRunning:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
return((bool)((module->GSTAT & (uint32_t) CCU8_GSTAT_PRB_Msk) == CCU8_GSTAT_PRB_Msk));
}
/**
* @param module Constant pointer to CCU8 module
* @param clock_mask Slices whose clocks are to be enabled simultaneously.
* Bit location 0/1/2/3 represents slice-0/1/2/3 respectively.
* Range: [0x1 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables clocks of multiple slices at a time, by configuring GIDLC.CS0I, GIDLC.CS1I, GIDLC.CS2I,
* GIDLC.CS3I bits.\n\n
* Takes an input clock_mask, which determines the slices that would receive the clock. Bring them out
* of the idle state simultaneously.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableClock()<BR> XMC_CCU8_DisableClock().
*/
__STATIC_INLINE void XMC_CCU8_EnableMultipleClocks(XMC_CCU8_MODULE_t *const module, const uint8_t clock_mask)
{
XMC_ASSERT("XMC_CCU8_EnableMultipleClocks:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
XMC_ASSERT("XMC_CCU8_EnableMultipleClocks:Invalid clock mask", (clock_mask < 16U));
module->GIDLC |= (uint32_t) clock_mask;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param compare_init Pointer to slice configuration structure
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Initialization of a CC8 slice to compare mode, by configuring CC8yTC, CC8yCMC, CC8yPSC, CC8yDITH, CC8yPSL,
* CC8yFPCS, CC8yCHC registers.\n\n
* CC8 slice is configured with Timer configurations in this routine. Timer is stopped before initialization
* by calling XMC_CCU8_SLICE_StopTimer(). After initialization user has to explicitly enable
* the shadow transfer for the required values by calling XMC_CCU8_EnableShadowTransfer() with appropriate mask.
*
* \par<b>Related APIs:</b><br>
* None.
*/
void XMC_CCU8_SLICE_CompareInit(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CONFIG_t *const compare_init);
/**
* @param slice Constant pointer to CC8 Slice
* @param capture_init Pointer to slice configuration structure
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Initialization of a CC8 slice to capture mode, by configuring CC8yTC, CC8yCMC, CC8yPSC,CC8yFPCS registers.\n\n
* CC8 slice is configured with Capture configurations in this routine. Timer is stopped before initialization
* by calling XMC_CCU8_SLICE_StopTimer(). After initialization user has to explicitly enable the shadow transfer
* for the required values by calling XMC_CCU8_EnableShadowTransfer() with appropriate mask.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_Capture0Config()<BR> XMC_CCU8_SLICE_Capture1Config().
*/
void XMC_CCU8_SLICE_CaptureInit(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_CAPTURE_CONFIG_t *const capture_init);
/**
* @param module Constant pointer to CCU8 module
* @param slice_number Slice for which the clock should be Enabled.
* Range: [0x0 to 0x3]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the slice timer clock, by configuring GIDLC.CS0I, GIDLC.CS1I, GIDLC.CS2I,
* GIDLC.CS3I bits according to the selected \a slice_number.\n\n
* It is possible to enable/disable clock at slice level. This uses the \b slice_number to indicate the
* slice whose clock needs to be enabled. Directly accessed register is GIDLC.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_DisableClock()<BR> XMC_CCU8_EnableMultipleClocks()<BR> XMC_CCU8_StartPrescaler()<BR> XMC_CCU8_StopPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_EnableClock(XMC_CCU8_MODULE_t *const module, const uint8_t slice_number)
{
XMC_ASSERT("XMC_CCU8_EnableClock:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
XMC_ASSERT("XMC_CCU8_EnableClock:Invalid Slice Number", (slice_number < 4U));
module->GIDLC |= ((uint32_t) 1 << slice_number);
}
/**
* @param module Constant pointer to CCU8 module
* @param slice_number Slice for which the clock should be disabled.
* Range: [0x0 to 0x3]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the slice timer clock, by configuring GIDLS.SS0I, GIDLS.SSS1I, GIDLS.SSS2I,
* GIDLS.SSS3I bits according to the selected \a slice_number .\n\n
* It is possible to disable clock at slice level using the module pointer.
* \b slice_number is used to disable the clock to a given slice of the module.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableClock()<BR> XMC_CCU8_EnableMultipleClocks()<BR> XMC_CCU8_StartPrescaler()<BR> XMC_CCU8_StopPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_DisableClock(XMC_CCU8_MODULE_t *const module, const uint8_t slice_number)
{
XMC_ASSERT("XMC_CCU8_DisableClock:Invalid Module Pointer", XMC_CCU8_IsValidModule(module));
XMC_ASSERT("XMC_CCU8_DisableClock:Invalid Slice Number", (slice_number < 4U));
module->GIDLS |= ((uint32_t) 1 << slice_number);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param out_path_msk configuration for output path selection.
* combination of XMC_CCU8_OUT_PATH_t enum items can be used to create a mask.
*
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configure the out the path of the two compare channels with specified ST signal, by configuring the
^ CC8yCHC register.\n\n
*
* For the two compare channels it is possible to select either direct ST signal or inverted ST signal.
* \b out_path_msk is used to set the required out put path.
*
* \par<b>Related APIs:</b><br>
* None
*/
void XMC_CCU8_SLICE_SetOutPath(XMC_CCU8_SLICE_t *const slice, const uint32_t out_path_msk);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Start Function
* @param start_mode Behaviour of slice when the start function is activated
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Start Function of the slice, by configuring CC8yCMC.ENDS and CC8yTC.ENDM bits.\n\n
* Start function is mapped with one of the 3 events. An external signal can control when a CC8 timer should start.
* Additionally, the behaviour of the slice upon activation of the start function is configured as well.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StopConfig()<BR> XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_StartConfig(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_t event,
const XMC_CCU8_SLICE_START_MODE_t start_mode);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Stop Function
* @param end_mode Behaviour of slice when the stop function is activated
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Stop function for the slice, by configuring CC8yCMC.STRTS and CC8yTC.STRM bits.\n\n
* Stop function is mapped with one of the 3 events. An external signal can control when a CCU8 timer should stop.
* Additionally, the behaviour of the slice upon activation of the stop function is configured as well.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartConfig()<BR> XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_StopConfig(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_t event,
const XMC_CCU8_SLICE_END_MODE_t end_mode);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External load Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Load Function for the slice, by configuring CC8yCMC.LDS bit.\n\n
* Load function is mapped with one of the 3 events. Up on occurrence of the event,\n
* if CC8yTCST.CDIR set to 0,CC8yTIMER register is reloaded with the value from compare channel 1 or
* compare channel 2\n
* if CC8yTCST.CDIR set to 1,CC8yTIMER register is reloaded with the value from period register\n
*
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_LoadConfig(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @param ch_num Select which compare channel value has to be loaded to the Timer register during external load event.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Up on occurrence of the external load event, if CC8yTCST.CDIR set to 0, CC8yTIMER register can be reloaded\n
* with the value from compare channel 1 or compare channel 2\n
* If CC8yTC.TLS is 0, compare channel 1 value is loaded to the CC8yTIMER register\n
* If CC8yTC.TLS is 1, compare channel 2 value is loaded to the CC8yTIMER register\n
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_LoadSelector(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_COMPARE_CHANNEL_t ch_num);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Modulation Function
* @param mod_mode Desired Modulation mode
* @param channel Specify the channel(s) on which the modulation should be applied.
* @param synch_with_pwm Option to synchronize modulation with PWM start
* Pass \b true if the modulation needs to be synchronized with PWM signal.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Output Modulation Function of the slice, by configuring CC8yCMC.MOS, CC8yTC.EMT and
* CC8yTC.EMS bits.\n\n
* Modulation function is mapped with one of the 3 events. The output signal of the CCU can
* be modulated according to a external input. Additionally, the behaviour of the slice upon activation
* of the modulation function is configured as well.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_ModulationConfig(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_t event,
const XMC_CCU8_SLICE_MODULATION_MODE_t mod_mode,
const XMC_CCU8_SLICE_MODULATION_CHANNEL_t channel,
const bool synch_with_pwm
);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Count Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Count Function of the slice, by configuring CC8yCMC.CNTS bit.\n\n
* Count function is mapped with one of the 3 events. CCU8 slice can take an external
* signal to act as the counting event. The CCU8 slice would count the
* edges present on the \b event selected.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_CountConfig(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Gating Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Gating Function of the slice, by configuring CC8yCMC.GATES bit.\n\n
* Gating function is mapped with one of the 3 events. A CCU8 slice can use an input signal that would
* operate as counter gating. If the configured Active level is detected the counter will gate all the pulses.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_GateConfig(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the Capture-0 Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Capture-0 Function of the slice, by configuring CC8yCMC.CAP0S bit.\n\n
* Capture function is mapped with one of the 3 events. A CCU8 slice can be configured into capture-0 mode
* with the selected \b event. In this mode the CCU8 will capture the timer value into CC8yC0V and CC8yC1V.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_Capture0Config(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the Capture-1 Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Capture-1 Function of the slice, by configuring CC8yCMC.CAP1S bit.\n\n
* Capture function is mapped with one of the 3 events. A CCU8 slice can be configured into capture-1
* mode with the selected \b event. In this mode the CCU8 will capture the timer value into CC8yC2V and CC8yC3V.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_Capture1Config(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* bool would return true if the extended capture read back mode is enabled<BR>
*
* \par<b>Description:</b><br>
* Checks if Extended capture mode read is enabled for particular slice or not, by reading CC8yTC.ECM bit.\n\n
* In this mode the there is only one associated read address for all the capture registers.
* Individual capture registers can still be accessed in this mode.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_GetCapturedValueFromFifo().
*/
__STATIC_INLINE bool XMC_CCU8_SLICE_IsExtendedCapReadEnabled(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_IsPrescalerRunning:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((bool)((slice->TC & (uint32_t) CCU8_CC8_TC_ECM_Msk) == (uint32_t)CCU8_CC8_TC_ECM_Msk));
}
#if defined(CCU8V1) /* Defined for XMC4800, XMC4700, XMC4500, XMC4400, XMC4200, XMC4100 devices only */
/**
* @param module Constant pointer to CCU8 module
* @param slice_number to check whether read value belongs to required slice or not
* @return <BR>
* int32_t Returns -1 if the FIFO value being retrieved is not from the \b slice_number.
* Returns the value captured in the \b slice_number, if captured value is from the correct slice.
* Range: [0x0 to 0xFFFF]
*
* \par<b>Description:</b><br>
* Read captured value from FIFO(ECRD register).\n\n
* This is applicable only in the Capture mode of operation. The signal whose timing characteristics are to be measured
* must be mapped to an event which in turn must be mapped to the capture function. Based on the capture criteria, the
* instant timer values are captured into capture registers. Timing characteristics of the input signal may then be
* derived/inferred from the captured values.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_IsExtendedCapReadEnabled().
*/
int32_t XMC_CCU8_GetCapturedValueFromFifo(const XMC_CCU8_MODULE_t *const module, const uint8_t slice_number);
#else
/**
* @param slice Constant pointer to CC8 Slice
* @param set The capture register set from which the captured value is to be retrieved
* @return <BR>
* uint32_t Returns the value captured in the \b slice_number
* Range: [0x0 to 0xFFFF]
*
* \par<b>Description:</b><br>
* Read captured value from FIFO(CC8yECRD0 and CC8yECRD1).\n\n
* This is applicable only in the Capture mode of operation. The signal whose timing characteristics are to be measured
* must be mapped to an event which in turn must be mapped to the capture function. Based on the capture criteria, the
* instant timer values are captured into capture registers. Timing characteristics of the input signal may then be
* derived/inferred from the captured values.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_IsExtendedCapReadEnabled().
* @note Defined for XMC4800, XMC4700, XMC4500, XMC4400, XMC4200, XMC4100 devices only. For other devices use XMC_CCU8_GetCapturedValueFromFifo() API
*/
uint32_t XMC_CCU8_SLICE_GetCapturedValueFromFifo(const XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_CAP_REG_SET_t set);
#endif
/**
* @param slice Constant pointer to CC8 Slice
* @param event Map an External event to the External Count Direction Function
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Count Direction of the slice, by configuring CC8yCMC.UDS bit.\n\n
* Count direction function is mapped with one of the 3 events. A slice can be configured to change the
* CC8yTIMER count direction depending on an external signal.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_DirectionConfig(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_EVENT_t event);
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the status bit override Function of the slice, by configuring CC8yCMC.OFS bit.\n\n
* Status bit override function is mapped with one of the 3 events. A slice can be configured to change the
* output of the timer's CC8yST1 signal depending on an external signal.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureStatusBitOverrideEvent().
*/
void XMC_CCU8_SLICE_StatusBitOverrideConfig(XMC_CCU8_SLICE_t *const slice);
/**
* @param slice Constant pointer to CC8 Slice
* @param exit_mode How should a previously logged trap state be exited?
* @param synch_with_pwm Should exit of trap state be synchronized with PWM cycle start?
* @return <BR>
* None<BR>
*
*
* \par<b>Description:</b><br>
* Configures the Trap Function of the slice, by configuring CC8yCMC.TS, CC8yTC.TRPSE, and CC8yTC.TRPSW bits.\n\n
* Trap function is mapped with Event-2. Criteria for exiting the trap state is configured.
* This trap function allows PWM outputs to react on the state of an input pin.
* Thus PWM output can be forced to inactive state upon detection of a trap.
* It is also possible to synchronize the trap function with the PWM signal using the \b synch_with_pwm.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureEvent()<BR> XMC_CCU8_SLICE_SetInput().
*/
void XMC_CCU8_SLICE_TrapConfig(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_TRAP_EXIT_MODE_t exit_mode,
bool synch_with_pwm);
/**
* @param slice Constant pointer to CC8 Slice
* @param ev1_config Pointer to event 1 configuration data
* @param ev2_config Pointer to event 2 configuration data
* @return <BR>
* None<BR>
*
*
* \par<b>Description:</b><br>
* Map Status bit override function with an Event1 & Event 2 of the slice and configure CC8yINS register.\n\n
* Details such as the input mapped to the event, event detection criteria and Low Pass filter options are programmed
* by this routine for the events 1 & 2. Event-1 input would be the trigger to override the value.
* Event-2 input would be the override value.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StatusBitOverrideConfig().
*/
void XMC_CCU8_SLICE_ConfigureStatusBitOverrideEvent(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_CONFIG_t *const ev1_config,
const XMC_CCU8_SLICE_EVENT_CONFIG_t *const ev2_config);
/**
* @param slice Constant pointer to CC8 Slice
* @param event The External Event which needs to be configured.
* @param config Pointer to event configuration data.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures an External Event of the slice, by updating CC8yINS register .\n\n
* Details such as the input mapped to the event, event detection criteria and low pass filter
* options are programmed by this routine. The Event \b config will configure the input selection,
* the edge selection, the level selection and the Low pass filter for the event.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartConfig()<BR> XMC_CCU8_SLICE_StopConfig()<BR> XMC_CCU8_SLICE_LoadConfig()<BR>
* XMC_CCU8_SLICE_ModulationConfig()<BR> XMC_CCU8_SLICE_CountConfig()<BR> XMC_CCU8_SLICE_GateConfig()<BR>
* XMC_CCU8_SLICE_Capture0Config()<BR> XMC_CCU8_SLICE_Capture1Config()<BR> XMC_CCU8_SLICE_DirectionConfig()<BR>
* XMC_CCU8_SLICE_StatusBitOverrideConfig()<BR> XMC_CCU8_SLICE_TrapConfig().
*/
void XMC_CCU8_SLICE_ConfigureEvent(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_t event,
const XMC_CCU8_SLICE_EVENT_CONFIG_t *config);
/**
* @param slice Constant pointer to CC8 Slice
* @param event The External Event which needs to be configured.
* @param input One of the 16 inputs meant to be mapped to the desired event
* @return <BR>
* None<BR>
*
*
* \par<b>Description:</b><br>
* Selects an input for an external event, by configuring CC8yINS register.\n\n
* It is possible to select one of the possible 16 input signals for a given Event.
* This configures the CC8yINS.EVxIS for the selected event.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartConfig()<BR> XMC_CCU8_SLICE_StopConfig()<BR> XMC_CCU8_SLICE_LoadConfig()<BR>
* XMC_CCU8_SLICE_ModulationConfig()<BR> XMC_CCU8_SLICE_CountConfig()<BR> XMC_CCU8_SLICE_GateConfig()<BR>
* XMC_CCU8_SLICE_Capture0Config()<BR> XMC_CCU8_SLICE_Capture1Config()<BR> XMC_CCU8_SLICE_DirectionConfig()<BR>
* XMC_CCU8_SLICE_StatusBitOverrideConfig()<BR> XMC_CCU8_SLICE_TrapConfig().
*/
void XMC_CCU8_SLICE_SetInput(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_EVENT_t event,
const XMC_CCU8_SLICE_INPUT_t input);
/**
* @param slice Constant pointer to CC8 Slice
* @param out_mask Output signals for which the Trap function needs to be activated.
* Use ::XMC_CCU8_SLICE_OUTPUT_t enum items to create a mask of choice,
* using a bit wise OR operation
* Range: [0x1 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the trap feature, by setting CC8yTC.TRAPE0, CC8yTC.TRAPE1, CC8yTC.TRAPE2 and CC8yTC.TRAPE3 bit based on the
* \a out_mask.\n\n
* A particularly useful feature where the PWM output can be forced inactive upon detection of a trap. The trap signal
* can be the output of a sensing element which has just detected an abnormal electrical condition.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_TrapConfig()<BR> XMC_CCU8_SLICE_DisableTrap()<BR> XMC_CCU8_SLICE_ConfigureEvent()<BR>
* XMC_CCU8_SLICE_SetInput().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableTrap(XMC_CCU8_SLICE_t *const slice, const uint32_t out_mask)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableTrap:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TC |= (uint32_t)out_mask << CCU8_CC8_TC_TRAPE0_Pos;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param out_mask Output signals for which the Trap function needs to be deactivated.
* Use ::XMC_CCU8_SLICE_OUTPUT_t enum items to create a mask of choice,
* using a bit wise OR operation.
* Range: [0x1 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the trap feature, by clearing CC8yTC.TRAPE0, CC8yTC.TRAPE1, CC8yTC.TRAPE2 and CC8yTC.TRAPE3 bit based on the
* \a out_mask.\n\n.\n\n
* This API will revert the changes done by XMC_CCU8_SLICE_EnableTrap().
* This Ensures that the TRAP function has no effect on the output of the CCU8 slice.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableTrap().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableTrap(XMC_CCU8_SLICE_t *const slice, const uint32_t out_mask)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableTrap:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TC &= ~((uint32_t)out_mask << CCU8_CC8_TC_TRAPE0_Pos);
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* bool returns \b true if the Timer is running else it returns \b false.
*
* \par<b>Description:</b><br>
* Returns the state of the timer (Either Running or stopped(idle)), by reading CC8yTCST.TRB bit.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartTimer()<BR> XMC_CCU8_SLICE_StopTimer().
*/
__STATIC_INLINE bool XMC_CCU8_SLICE_IsTimerRunning(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetTimerStatus:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return(bool)(((slice->TCST) & CCU8_CC8_TCST_TRB_Msk) == (uint32_t)CCU8_CC8_TCST_TRB_Msk);
}
/**
* @param slice Pointer to an instance of CC8 slice
* @return <BR>
* bool returns \b true if the dead time counter of Compare channel-1 is running else it returns \b false.
*
* \par<b>Description:</b><br>
* Returns the state of the Dead time counter 1 (Either Running or stopped(idle)), by reading CC8yTCST.DTR1 bit.
* This returns the state of the dead time counter which is linked to Compare channel-1.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_IsDeadTimeCntr2Running().
*/
__STATIC_INLINE bool XMC_CCU8_SLICE_IsDeadTimeCntr1Running(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_IsDeadTimeCntr1Running:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return(bool)(((slice->TCST) & CCU8_CC8_TCST_DTR1_Msk) == (uint32_t)CCU8_CC8_TCST_DTR1_Msk);
}
/**
* @param slice Pointer to an instance of CC8 slice
* @return <BR>
* bool returns \b true if the dead time counter of Compare channel-2 is running else it returns \b false.
*
* \par<b>Description:</b><br>
* Returns the state of the Dead time counter 2 (Either Running or stopped(idle)), by reading CC8yTCST.DTR2 bit.
* This returns the state of the dead time counter which is linked to Compare channel-2.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_IsDeadTimeCntr1Running().
*/
__STATIC_INLINE bool XMC_CCU8_SLICE_IsDeadTimeCntr2Running(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_IsDeadTimeCntr2Running:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return(bool)(((slice->TCST) & CCU8_CC8_TCST_DTR2_Msk) == (uint32_t)CCU8_CC8_TCST_DTR2_Msk);
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* ::XMC_CCU8_SLICE_TIMER_COUNT_DIR_t returns the direction in which the timer is counting.
*
* \par<b>Description:</b><br>
* Returns the timer counting direction, by reading CC8yTCST.CDIR bit.\n\n
* This API will return the direction in which the timer is currently
* incrementing(XMC_CCU8_SLICE_TIMER_COUNT_DIR_UP) or decrementing (XMC_CCU8_SLICE_TIMER_COUNT_DIR_DOWN).
*
* \par<b>Related APIs:</b><br>
* None.
*/
__STATIC_INLINE XMC_CCU8_SLICE_TIMER_COUNT_DIR_t XMC_CCU8_SLICE_GetCountingDir(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetCountingDir:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((XMC_CCU8_SLICE_TIMER_COUNT_DIR_t)(((slice->TCST) & CCU8_CC8_TCST_CDIR_Msk) >> CCU8_CC8_TCST_CDIR_Pos));
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Starts the timer counting operation, by setting CC8yTCSET.TRBS bit.\n\n
* It is necessary to have configured the CC8 slice before starting its timer.
* Before the Timer is started ensure that the clock is provided to the slice.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StopTimer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_StartTimer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_StartTimer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TCSET = CCU8_CC8_TCSET_TRBS_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Stops the Timer.\n\n
* Timer counting operation can be stopped by invoking this API, by setting CC8yTCCLR.TRBC bit.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartTimer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_StopTimer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_StopTimer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TCCLR = (uint32_t) CCU8_CC8_TCCLR_TRBC_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Resets the timer count to zero, by setting CC8yTCCLR.TCC bit.\n\n
* A timer which has been stopped can still retain the last counted value.
* After invoking this API the timer value will be cleared.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartTimer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_ClearTimer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_ClearTimer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TCCLR = (uint32_t) CCU8_CC8_TCCLR_TCC_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Stops and resets the timer count to zero, by setting CC8yTCCLR.TCC and CC8yTCCLR.TRBC bit.\n\n
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_StartTimer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_StopClearTimer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_StopClearTimer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TCCLR = CCU8_CC8_TCCLR_TRBC_Msk | CCU8_CC8_TCCLR_TCC_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* ::XMC_CCU8_SLICE_MODE_t returns XMC_CCU8_SLICE_MODE_COMPARE if the slice is operating in compare mode
* returns XMC_CCU8_SLICE_MODE_CAPTURE if the slice is operating in capture mode
*
* \par<b>Description:</b><br>
* Retrieves the current mode of operation in the slice (either Capture mode or Compare mode), by reading
* CC8yTC.CMOD bit.\n\n
* Ensure that before invoking this API the CCU8 slice should be configured otherwise the output of this API is
* invalid.
*
* \par<b>Related APIs:</b><br>
* None.
*/
__STATIC_INLINE XMC_CCU8_SLICE_MODE_t XMC_CCU8_SLICE_GetSliceMode(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetSliceMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((XMC_CCU8_SLICE_MODE_t)(((slice->TC) & CCU8_CC8_TC_CMOD_Msk) >> CCU8_CC8_TC_CMOD_Pos));
}
/**
* @param slice Constant pointer to CC8 Slice
* @param mode Desired repetition mode (Either single shot or Continuous)
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the Timer to either Single shot mode or continuous mode, by configuring CC8yTC.TSSM bit.\n\n
* The timer will count up to the terminal count as specified in the period register and stops immediately if the repeat
* mode has been set to single shot. In the continuous mode of operation, the timer starts counting all over again after
* reaching the terminal count.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetTimerRepeatMode().
*/
void XMC_CCU8_SLICE_SetTimerRepeatMode(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t mode);
/**
* @param slice Constant pointer to CC8 Slice
* @return <br>
* ::XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t returns XMC_CCU8_SLICE_TIMER_REPEAT_MODE_REPEAT if continuous mode is selected
* returns XMC_CCU8_SLICE_TIMER_REPEAT_MODE_SINGLE if single shot mode is selected
*
* \par<b>Description:</b><br>
* Retrieves the Timer repeat mode, either Single shot mode or continuous mode, by reading CC8yTC.TSSM bit.\n\n
* The timer will count upto the terminal count as specified in the period register and stops immediately if the repeat
* mode has been set to single shot mode. In the continuous mode of operation, the timer starts counting
* all over again after reaching the terminal count.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetTimerRepeatMode().
*/
__STATIC_INLINE XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t XMC_CCU8_SLICE_GetTimerRepeatMode(
const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetTimerRepeatMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((XMC_CCU8_SLICE_TIMER_REPEAT_MODE_t)(((slice->TC) & CCU8_CC8_TC_TSSM_Msk) >> CCU8_CC8_TC_TSSM_Pos));
}
/**
* @param slice Constant pointer to CC8 Slice
* @param mode Desired counting mode (Either Edge Aligned or Center Aligned)
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the timer counting mode either Edge Aligned or Center Aligned, by configuring CC8yTC.TCM bit.\n\n
* In the edge aligned mode, the timer counts from 0 to the terminal count. Once the timer count has reached a preset
* compare value, the timer status output asserts itself. It will now deassert only after the timer count reaches the
* terminal count.\n In the center aligned mode, the timer first counts from 0 to the terminal count and then back to 0.
* During this upward and downward counting, the timer status output stays asserted as long as the timer value is
* greater than the compare value.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetTimerCountingMode().
*/
void XMC_CCU8_SLICE_SetTimerCountingMode(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_TIMER_COUNT_MODE_t mode);
/**
* @param slice Constant pointer to CC8 Slice
* @return <br>
* ::XMC_CCU8_SLICE_TIMER_COUNT_MODE_t returns XMC_CCU8_SLICE_TIMER_COUNT_MODE_EA if edge aligned mode is selected
* returns XMC_CCU8_SLICE_TIMER_COUNT_MODE_CA if center aligned mode is selected
*
* \par<b>Description:</b><br>
* Retrieves timer counting mode either Edge aligned or Center Aligned, by reading CC8yTC.TCM bit.\n\n
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetTimerCountingMode().
*/
__STATIC_INLINE XMC_CCU8_SLICE_TIMER_COUNT_MODE_t XMC_CCU8_SLICE_GetTimerCountingMode(
const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetTimerCountingMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((XMC_CCU8_SLICE_TIMER_COUNT_MODE_t)(((slice->TC) & CCU8_CC8_TC_TCM_Msk) >> CCU8_CC8_TC_TCM_Pos));
}
/**
* @param slice Constant pointer to CC8 Slice
* @param period_val Timer period value
* Range: [0x0 to 0xFFFF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the timer period, by writing CC8yPRS register.\n\n
* The frequency of counting/ PWM frequency is determined by this value. The period value is written to a shadow
* register. Explicitly enable the shadow transfer for the the period value by calling
* XMC_CCU8_EnableShadowTransfer() with appropriate mask. If shadow transfer is enabled and the timer is running,
* a period match transfers the value from the shadow register to the actual period register.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetTimerPeriodMatch().
*/
void XMC_CCU8_SLICE_SetTimerPeriodMatch(XMC_CCU8_SLICE_t *const slice, const uint16_t period_val);
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* uint16_t returns the current timer period value
* Range: [0x0 to 0xFFFF]
*
* \par<b>Description:</b><br>
* Retrieves the timer period value currently effective, by reading CC8yPR register.\n\n
* If the timer is active then the value being returned is currently being used for the PWM period.
*
* \par<b>Note:</b><br>
* The XMC_CCU8_SLICE_SetTimerPeriodMatch() would set the new period value to a shadow register.
* This would only transfer the new values into the actual period register if the shadow transfer request
* is enabled and if a period match occurs. Hence a consecutive call to XMC_CCU8_SLICE_GetTimerPeriodMatch()
* would not reflect the new values until the shadow transfer completes.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetTimerPeriodMatch().
*/
__STATIC_INLINE uint16_t XMC_CCU8_SLICE_GetTimerPeriodMatch(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetTimerPeriodMatch:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((uint16_t) slice->PR);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param channel Select the compare channel to which the \b compare_val has to programmed.
* @param compare_val Timer compare value
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the timer compare value, by writing CC8yCR1S and CC8yCR2S registers.\n\n
* The PWM duty cycle is determined by this value.\n\n
* The compare value is written to a shadow register. Explicitly enable the shadow transfer for
* the the period/compare value by calling XMC_CCU8_EnableShadowTransfer() with
* appropriate mask.If shadow transfer is enabled and the timer is running,
* a period match transfers the value from the shadow register to the actual compare register.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer().
*/
void XMC_CCU8_SLICE_SetTimerCompareMatch(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CHANNEL_t channel,
const uint16_t compare_val);
/**
* @param slice Constant pointer to CC8 Slice
* @param compare_val Timer compare value
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the timer compare1 value, by writing CC8yCR1S register.\n\n
* The PWM duty cycle is determined by this value.\n\n
* The compare value is written to a shadow register. Explicitly enable the shadow transfer for
* the the period/compare value by calling XMC_CCU8_EnableShadowTransfer() with appropriate mask.
* If shadow transfer is enabled and the timer is running, a period match transfers the value from
* the shadow register to the actual compare register.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetTimerCompareMatchChannel1(XMC_CCU8_SLICE_t *const slice, const uint16_t compare_val)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetTimerCompareMatchChannel1:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->CR1S = (uint32_t) compare_val;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param compare_val Timer compare value
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the timer compare2 value, by writing CC8yCR2S register.\n\n
* The PWM duty cycle is determined by this value.\n\n
* The compare value is written to a shadow register. Explicitly enable the shadow transfer for
* the the period/compare value by calling XMC_CCU8_EnableShadowTransfer() with appropriate mask.
* If shadow transfer is enabled and the timer is running, a period match transfers the value from
* the shadow register to the actual compare register.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetTimerCompareMatchChannel2(XMC_CCU8_SLICE_t *const slice, const uint16_t compare_val)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetTimerCompareMatchChannel2:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->CR2S = (uint32_t) compare_val;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param channel Select the compare channel to retrieve from.
* @return <BR>
* uint16_t returns the current timer compare value
* Range: [0x0 to 0xFFFF]
*
* \par<b>Description:</b><br>
* Retrieves the timer compare value currently effective, by reading CC8yCR1S and CC8yCR2S registers.\n\n
* If the timer is active then the value being returned is currently being for the PWM duty cycle( timer compare value).
*
* \par<b>Note:</b><br>
* The XMC_CCU8_SLICE_SetTimerCompareMatch() would set the new compare value to a shadow register.
* This would only transfer the new values into the actual compare register if the shadow transfer request
* is enabled and if a period match occurs. Hence a consecutive call to XMC_CCU8_SLICE_GetTimerCompareMatch()
* would not reflect the new values until the shadow transfer completes.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetTimerCompareMatch().
*/
uint16_t XMC_CCU8_SLICE_GetTimerCompareMatch(const XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CHANNEL_t channel);
/**
* @param module Constant pointer to CCU8 module
* @param shadow_transfer_msk Shadow transfer request mask for various transfers.
* Use ::XMC_CCU8_SHADOW_TRANSFER_t enum items to create a mask of choice,
* using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Requests of shadow transfer for Period, Compare, Passive level, dither and prescaler, by configuring
* the GCSS register.\n\n
* The transfer from the shadow registers to the actual registers is done in the immediate next occurrence of the
* shadow transfer trigger after the API is called.
*
* Any call to XMC_CCU8_SLICE_SetTimerPeriodMatch()<BR> XMC_CCU8_SLICE_SetTimerCompareMatch()<BR>
* XMC_XMC_CCU8_SLICE_SetPrescaler()<BR> XMC_CCU8_SLICE_CompareInit()<BR> XMC_CCU8_SLICE_CaptureInit().
* must be succeeded by this API.
*
* \par<b>Related APIs:</b><br>
* None.
*/
__STATIC_INLINE void XMC_CCU8_EnableShadowTransfer(XMC_CCU8_MODULE_t *const module, const uint32_t shadow_transfer_msk)
{
XMC_ASSERT("XMC_CCU8_EnableShadowTransfer:Invalid module Pointer", XMC_CCU8_IsValidModule(module));
module->GCSS = (uint32_t)shadow_transfer_msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* uint16_t returns the current timer value
* Range: [0x0 to 0xFFFF]
*
* \par<b>Description:</b><br>
* Retrieves the latest timer value, from CC8yTIMER register.\n\n
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetTimerValue().
*/
__STATIC_INLINE uint16_t XMC_CCU8_SLICE_GetTimerValue(const XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetTimerValue:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
return((uint16_t) slice->TIMER);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param timer_val The new timer value that has to be loaded into the TIMER register.
* Range: [0x0 to 0xFFFF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Loads a new timer value, by setting CC8yTIMER register.\n\n
*
* \par<b>Note:</b><br>
* Request to load is ignored if the timer is running.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetTimerValue().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetTimerValue(XMC_CCU8_SLICE_t *const slice, const uint16_t timer_val)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetTimerValue:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TIMER = (uint32_t) timer_val;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param period_dither Boolean instruction on dithering of period match
* @param duty_dither Boolean instruction on dithering of compare match
* @param spread Dither compare value
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables dithering of PWM frequency and duty cycle, by configuring CC8yTC.DITHE and CC8yDITS bits.\n\n
* Some control loops are slow in updating PWM frequency and duty cycle. In such a case, a Bresenham style dithering
* can help reduce long term errors. Dithering can be applied to period and duty individually,
* this can be selected using the parameter \b period_dither and \b duty_dither.
* The \b spread would provide the dither compare value. If the dither counter value is less than this \b spread then
* the period/compare values would be dithered according to the dither mode selected. This API would invoke
* XMC_CCU8_SLICE_SetDitherCompareValue().
*
* \par<b>Note:</b><br>
* After this API call, XMC_CCU8_EnableShadowTransfer() has to be called with appropriate mask
* to transfer the dither value.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DisableDithering().
*/
void XMC_CCU8_SLICE_EnableDithering(XMC_CCU8_SLICE_t *const slice,
const bool period_dither,
const bool duty_dither,
const uint8_t spread);
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables dithering of PWM frequency and duty cycle, by clearing CC8yTC.DITHE bits.\n\n
* This disables the Dither mode that was set in XMC_CCU8_SLICE_EnableDithering().
* This API will not clear the dither compare value.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableDithering().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableDithering(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableDithering:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TC &= ~((uint32_t) CCU8_CC8_TC_DITHE_Msk);
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the floating prescaler, by setting CC8yTC.FPE bit.\n\n
* The prescaler divider starts with an initial value and increments upon every period match. It keeps incrementing
* until a ceiling (prescaler compare value) is hit and thereafter rolls back to the original prescaler divider value.\n
* It is necessary to have programmed an initial divider value and a compare value before the feature is enabled.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetFloatingPrescalerCompareValue()<BR> XMC_CCU8_SLICE_DisableFloatingPrescaler()<BR>
* XMC_XMC_CCU8_SLICE_SetPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableFloatingPrescaler(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableFloatingPrescaler:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TC |= (uint32_t) CCU8_CC8_TC_FPE_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the floating prescaler, by clearing CC8yTC.FPE bit.\n\n
* This would return the prescaler to the normal mode.
* The prescaler that would be applied is the value present in CC8yPSC.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableFloatingPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableFloatingPrescaler(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableFloatingPrescaler:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->TC &= ~((uint32_t) CCU8_CC8_TC_FPE_Msk);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param comp_val Dither compare value
* Range: [0x0 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Sets the dither spread/compare value, by setting CC8yDITS.DCVS bits.\n\n
* This value is the cornerstone of PWM dithering feature. Dithering is applied/done when the value in the
* dithering counter is less than this compare/spread value. For all dithering counter values greater than
* the spread value, there is no dithering. After setting the value XMC_CCU8_EnableShadowTransfer() has to be
* called with appropriate mask.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableDithering().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetDitherCompareValue(XMC_CCU8_SLICE_t *const slice, const uint8_t comp_val)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetDitherCompareValue:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_SetDitherCompareValue:Invalid Dither compare value", (comp_val <= 15U));
slice->DITS = comp_val;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param div_val Prescaler divider value
* Range: [0x0 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the slice specific prescaler divider, by configuring the CC8yPSC and CC8yFPC registers.\n\n
* The prescaler divider may only be programmed after the prescaler run bit has been cleared
* by calling XMC_CCU8_StopPrescaler().
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetFloatingPrescalerCompareValue().
*/
void XMC_CCU8_SLICE_SetPrescaler(XMC_CCU8_SLICE_t *const slice, const uint8_t div_val);
/**
* @param slice Constant pointer to CC8 Slice
* @param cmp_val Prescaler divider compare value
* Range: [0x0 to 0xF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Programs the slice specific prescaler divider compare value, by configuring CC8yFPCS register.\n\n
* The compare value is applicable only in floating mode of operation. The prescaler divider starts with an initial
* value and increments to the compare value steadily upon every period match. Once prescaler divider
* equals the prescaler divider compare value, the value in the former resets back to the PVAL (from FPC). After setting
* the value, XMC_CCU8_EnableShadowTransfer() has to be called with appropriate mask.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetPrescaler().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetFloatingPrescalerCompareValue(XMC_CCU8_SLICE_t *const slice,
const uint8_t cmp_val)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetFloatingPrescalerCompareValue:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
/* First, write to the shadow register */
slice->FPCS = (uint32_t) cmp_val;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param ch_num Compare channel for which the multi-channel mode is needed.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the multichannel mode, by setting CC8yTC.MCME1 or CC8yTC.MCME1 bits based on the \a ch_num.\n\n
* The output state of the Timer slices can be controlled in parallel by a single input signal.
* A particularly useful feature in motor control applications where the PWM output of multiple slices of a module can
* be gated and ungated by multi-channel gating inputs connected to the slices. A peripheral like POSIF connected to the
* motor knows exactly which of the power drive switches are to be turned on and off at any instant. It can thus through
* a gating bus (known as multi-channel inputs) control which of the slices output stays gated/ungated.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DisableMultiChannelMode()<BR> XMC_CCU8_SetMultiChannelShadowTransferMode().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableMultiChannelMode(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CHANNEL_t ch_num)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableMultiChannelMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_EnableMultiChannelMode:Invalid Channel", XMC_CCU8_SLICE_CHECK_COMP_CHANNEL(ch_num));
slice->TC |= (uint32_t)CCU8_CC8_TC_MCME1_Msk << ch_num;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param ch_num Compare channel for which the multi-channel mode needs to be disabled.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the multichannel mode, by clearing CC8yTC.MCME1 or CC8yTC.MCME1 bits based on the \a ch_num.\n\n
* Returns the slices to the normal operation mode. This takes the slice number as input and
* configures the multi channel mode for it.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableMultiChannelMode().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableMultiChannelMode(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CHANNEL_t ch_num)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableMultiChannelMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_DisableMultiChannelMode:Invalid Channel", XMC_CCU8_SLICE_CHECK_COMP_CHANNEL(ch_num));
slice->TC &= ~((uint32_t)CCU8_CC8_TC_MCME1_Msk << ch_num);
}
/**
* @param module Constant pointer to CCU8 module
* @param slice_mode_msk Slices for which the configuration has to be applied.
* Use ::XMC_CCU8_MULTI_CHANNEL_SHADOW_TRANSFER_t enum items to create a mask of choice,
* using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the Multi-channel shadow transfer request trigger signal either by software or hardware by configuring
* GCTRL.MSE0, GCTRL.MSE1, GCTRL.MSE2, and GCTRL.MSE3 based on the mask.\n\n
* The shadow transfer would take place either if it was requested by software or by the CCU8x.MCSS input.
*
* \par<b>Related APIs:</b><br>
* None.
*/
void XMC_CCU8_SetMultiChannelShadowTransferMode(XMC_CCU8_MODULE_t *const module, const uint32_t slice_mode_msk);
/**
* @param slice Constant pointer to CC8 Slice
* @param reg_num The capture register from which the captured value is to be retrieved
* Range: [0,3]
* @return <BR>
* uint32_t Returns the Capture register value.
* Range: [0 to 0x1FFFFF]
*
* \par<b>Description:</b><br>
* Retrieves timer value which has been captured in the Capture registers, by reading CC8yCV[\b reg_num] register.\n\n
* The signal whose timing characteristics are to be measured must be mapped to an event which in turn must be mapped
* to the capture function. Based on the capture criteria, the timer values are captured into capture registers. Timing
* characteristics of the input signal may then be derived/inferred from the captured values. The full flag will help
* to find out if there is a new captured value present.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetLastCapturedTimerValue().
*/
uint32_t XMC_CCU8_SLICE_GetCaptureRegisterValue(const XMC_CCU8_SLICE_t *const slice, const uint8_t reg_num);
/**
* @param slice Constant pointer to CC8 Slice
* @param set The capture register set, which must be evaluated
* @param val_ptr Out Parameter of the API.Stores the captured timer value into this out parameter.
* @return <BR>
* ::XMC_CCU8_STATUS_t Returns XMC_CCU8_STATUS_OK if there was new value present in the capture registers.
* returns XMC_CCU8_STATUS_ERROR if there was no new value present in the capture registers.
*
* \par<b>Description:</b><br>
* Retrieves the latest captured timer value, by reading CC8yCV registers.\n\n
* Retrieve the timer value last stored by the slice. When separate capture events are used,
* users must specify the capture set to evaluate. If single capture event mode is used, all 8 capture registers are
* evaluated.\n
* The lowest register is evaluated first followed by the next higher ordered register and this continues until all
* capture registers have been evaluated.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_GetCaptureregisterValue().
*/
XMC_CCU8_STATUS_t XMC_CCU8_SLICE_GetLastCapturedTimerValue(const XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_CAP_REG_SET_t set,
uint32_t *val_ptr);
/**
* @param slice Constant pointer to CC8 Slice
* @param event Event whose assertion can potentially lead to an interrupt
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the generation of an interrupt pulse for the event, by configuring CC8yINTE register.\n\n
* For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding
* NVIC node must be enabled as well. This API merely enables the event. Binding with SR is performed by another API.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetInterruptNode()<BR> XMC_CCU8_SLICE_EnableMultipleEvents()<BR> XMC_CCU8_SLICE_DisableEvent()<BR>
* XMC_CCU8_SLICE_DisableMultipleEvents().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableEvent(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_IRQ_ID_t event)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableEvent:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_EnableEvent:Invalid SR event", XMC_CCU8_SLICE_CHECK_INTERRUPT(event));
slice->INTE |= ((uint32_t) 1) << ((uint32_t) event);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param mask Event mask such that multiple events can be enabled.
* Use ::XMC_CCU8_SLICE_MULTI_IRQ_ID_t enum items to create a mask of choice,
* using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Enables the generation of an interrupt pulse for the required events, by configuring CC8yINTE register.\n\n
* For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding
* NVIC node must be enabled as well. This API merely enables the events. Binding with SR is performed by another API.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetInterruptNode()<BR> XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_DisableEvent()<BR>
* XMC_CCU8_SLICE_DisableMultipleEvents().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableMultipleEvents(XMC_CCU8_SLICE_t *const slice, const uint16_t mask)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableMultipleEvents:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->INTE = (uint32_t) mask;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param event Event whose assertion can potentially lead to an interrupt
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the generation of an interrupt pulse for the event, by clearing CC8yINTE register.\n\n
* Prevents the event from being asserted.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetInterruptNode()<BR> XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_EnableMultipleEvents()<BR>
* XMC_CCU8_SLICE_DisableMultipleEvents().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableEvent(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_IRQ_ID_t event)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableEvent:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_DisableEvent:Invalid SR event", XMC_CCU8_SLICE_CHECK_INTERRUPT(event));
slice->INTE &= ~(((uint32_t) 1) << ((uint32_t) event));
}
/**
* @param slice Constant pointer to CC8 Slice
* @param mask Event mask such that multiple events can be enabled.
* Use ::XMC_CCU8_SLICE_MULTI_IRQ_ID_t enum items to create a mask of choice,
* using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the generation of an interrupt pulse for the required events, by clearing CC8yINTE register.\n\n
* Prevents selected events of the slice from being asserted.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetInterruptNode()<BR> XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_EnableMultipleEvents()<BR>
* XMC_CCU8_SLICE_DisableEvent().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableMultipleEvents(XMC_CCU8_SLICE_t *const slice, const uint16_t mask)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableMultipleEvents:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->INTE &= ~((uint32_t) mask);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param event Event whose assertion can potentially lead to an interrupt
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Manually asserts the requested event, by setting CC8ySWS register.\n\n
* For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding
* NVIC node must be enabled as well. This API manually asserts the requested event.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_SetInterruptNode()<BR> XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_EnableMultipleEvents().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetEvent(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_IRQ_ID_t event)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetEvent:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_SetEvent:Invalid SR event", XMC_CCU8_SLICE_CHECK_INTERRUPT(event));
slice->SWS |= ((uint32_t) 1) << ((uint32_t) event);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param event Asserted event which must be acknowledged.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Acknowledges an asserted event, by setting CC8ySWR with respective event flag.\n\n
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_SetEvent()<BR> XMC_CCU8_SLICE_GetEvent().
*
*/
__STATIC_INLINE void XMC_CCU8_SLICE_ClearEvent(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_IRQ_ID_t event)
{
XMC_ASSERT("XMC_CCU8_SLICE_ClearEvent:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_ClearEvent:Invalid SR event", XMC_CCU8_SLICE_CHECK_INTERRUPT(event));
slice->SWR |= ((uint32_t) 1) << ((uint32_t) event);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param event Event to be evaluated for assertion
* @return <br>
* bool Returns true if event is set else false is returned.
*
* \par<b>Description:</b><br>
* Evaluates if a given event is asserted or not, by reading CC8yINTS register.\n\n
* Return true if the event is asserted. For a event to be asserted it has to be
* first enabled. Only if that event is enabled the call to this API is valid.
* If the Event is enabled and has not yet occurred then a false is returned.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_SetEvent().
*/
__STATIC_INLINE bool XMC_CCU8_SLICE_GetEvent(const XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_IRQ_ID_t event)
{
XMC_ASSERT("XMC_CCU8_SLICE_GetEvent:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
XMC_ASSERT("XMC_CCU8_SLICE_GetEvent:Invalid SR event", XMC_CCU8_SLICE_CHECK_INTERRUPT(event));
return(((uint32_t)(slice->INTS & ((uint32_t)1 << event))) != 0U);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param event Event which must be bound to a service request line
* @param sr The Service request line which is bound to the \b event
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Binds requested event to a service request line, by configuring CC8ySRS register with respective event.\n\n
* For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding
* NVIC node must be enabled as well. This API binds the requested event with the requested service request line(\b sr).
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_SetEvent().
*
*/
void XMC_CCU8_SLICE_SetInterruptNode(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_IRQ_ID_t event,
const XMC_CCU8_SLICE_SR_ID_t sr);
/**
* @param slice Constant pointer to CC8 Slice
* @param out Output signal for which the passive level needs to be set.
* @param level Output passive level for the \b out signal
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the passive level for the slice output, by setting CC8yPSL register.\n\n
* Defines the passive level for the timer slice output pin. Selects either level high is passive
* or level low is passive. This is the level of the output before the compare match is value changes it.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableEvent()<BR> XMC_CCU8_SLICE_SetEvent().
*/
void XMC_CCU8_SLICE_SetPassiveLevel(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_OUTPUT_t out,
const XMC_CCU8_SLICE_OUTPUT_PASSIVE_LEVEL_t level);
/**
* @param slice Constant pointer to CC8 Slice
* @param config Pointer to dead time configuration data
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Initializes Dead time configuration for the slice outputs, by configuring CC8yDC1R, CC8yDC2R, CC8yDTC registers.\n\n
* This routine programs dead time delays (rising & falling) and dead time clock prescaler.
* Details such as the choice of dead time for channel1, channel2, ST1, Inverted ST1, ST2, Inverted ST2, are also
* programmed by this routine.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_ConfigureDeadTime()<BR> XMC_CCU8_SLICE_SetDeadTimeValue()<BR> XMC_CCU8_SLICE_SetDeadTimePrescaler()<BR>
* XMC_CCU8_SLICE_IsDeadTimeCntr1Running()<BR> XMC_CCU8_SLICE_IsDeadTimeCntr2Running().
*/
void XMC_CCU8_SLICE_DeadTimeInit(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_DEAD_TIME_CONFIG_t *const config);
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the slice to generate PWM in asymmetric compare mode, by setting CC8yCHC.ASE bit.\n\n
* In asymmetric compare mode, the compare channels 1 & 2 are grouped to generate the PWM.This would
* generate an inverted PWM at OUT0 & OUT1.
* In Edge Aligned mode (counting up), the Status bit is set when a compare match of
* Compare channel-1 occurs and cleared when a compare match event of Compare channel-2 occurs.\n
* In Center Aligned mode, the status bit is set when a compare match event of Compare channel-1 occurs while
* counting up and cleared when a compare match event of Compare channel-2 occurs while counting down.
*
* \par<b>Note:</b><br>
* External count direction function is enabled then the asymmetric mode of operation is not possible.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableSymmetricCompareMode()<BR>
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableAsymmetricCompareMode(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableAsymmetricCompareMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->CHC |= (uint32_t) CCU8_CC8_CHC_ASE_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the slice to generate PWM in symmetric(standard) compare mode, by clearing CC8yCHC.ASE bit.\n\n
* In symmetric compare mode, the compare channels 1 & 2 are independent of each other & each channel generates the
* PWM & inverted PWM at OUT0, OUT1, OUT2 & OUT3.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableAsymmetricCompareMode().
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableSymmetricCompareMode(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableSymmetricCompareMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->CHC &= ~((uint32_t) CCU8_CC8_CHC_ASE_Msk);
}
/**
* @param slice Constant pointer to CC8 Slice
* @param mask The Dead Time configuration mask.
* Do a bitwise OR operation on the following values depending on the need.
* Value 0x1: Dead Time Enable for Compare Channel 1
* Value 0x2: Dead Time Enable for Compare Channel 2
* Value 0x4: Dead Time Enable for CC8yST1 path is enabled.
* Value 0x8: Dead Time Enable for Inverted CC8yST1 path is enabled.
* Value 0x10: Dead Time Enable for CC8yST2 path is enabled.
* Value 0x20: Dead Time Enable for Inverted CC8yST2 path is enabled.
* Range: [0x0 to 0x3F]
*
* \par<b>Description:</b><br>
* Activates or deactivates dead time for compare channel and ST path, by configuring CC8y.DC1R, CC8y.DC1R and
* CC8y.DTC registers.\n\n
* Use the provided masks to enable/disable the dead time for the compare channels and the ST signals. It is possible
* to deactivate the dead time for all the options by passing a 0x0 as the mask.
* Details such as the choice of dead time for channel1, channel2, ST1, Inverted ST1, ST2, Inverted ST2, are
* programmed by this routine.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DeadTimeInit()<BR> XMC_CCU8_SLICE_SetDeadTimeValue()<BR> XMC_CCU8_SLICE_SetDeadTimePrescaler()<BR>
* XMC_CCU8_SLICE_IsDeadTimeCntr1Running()<BR> XMC_CCU8_SLICE_IsDeadTimeCntr2Running().
*/
void XMC_CCU8_SLICE_ConfigureDeadTime(XMC_CCU8_SLICE_t *const slice, const uint8_t mask);
/**
* @param slice Constant pointer to CC8 Slice
* @param channel Compare channel number
* @param rise_value Programs rising edge delay
* Range: [0x0 to 0xFF]
* @param fall_value Programs falling edge delay
* Range: [0x0 to 0xFF]
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the dead time for rising and falling edges, by updating CC8y.DC1R, CC8y.DC1R registers.\n\n
* This API will Configure the delay that is need either when the value changes from 0 to 1 (rising edge) or
* value changes from 1 to 0(falling edge). Directly accessed registers are CC8yDC1R, CC8yDC2R.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DeadTimeInit()<BR> XMC_CCU8_SLICE_SetDeadTimeValue()<BR> XMC_CCU8_SLICE_ConfigureDeadTime()<BR>
* XMC_CCU8_SLICE_IsDeadTimeCntr1Running()<BR> XMC_CCU8_SLICE_IsDeadTimeCntr2Running().
*/
void XMC_CCU8_SLICE_SetDeadTimeValue(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_COMPARE_CHANNEL_t channel,
const uint8_t rise_value,
const uint8_t fall_value);
/**
* @param slice Pointer to an instance of CC8 slice
* @param div_val Prescaler divider value
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures clock division factor for dead time generator, by configuring CC8yDTC.DTCC bit.
* The Clock divider works on the timer clock. It is possible to scale the timer clock for the dead time
* generator by a factor of 1/2/4/8. This selection is passed as an argument to the API.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DeadTimeInit()<BR> XMC_CCU8_SLICE_SetDeadTimeValue()<BR> XMC_CCU8_SLICE_ConfigureDeadTime()<BR>
* XMC_CCU8_SLICE_IsDeadTimeCntr1Running()<BR> XMC_CCU8_SLICE_IsDeadTimeCntr2Running().
*/
void XMC_CCU8_SLICE_SetDeadTimePrescaler(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_DTC_DIV_t div_val);
/**
* @param slice Constant pointer to CC8 Slice
* @param channel which channel status has to be give as out
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures status ST1, ST2 mapping to STy, by configuring CC8yTC.STOS bits.\n\n
* This routine defines the output STy as a function of ST1 or ST2 or both ST1 & ST2.
* It is possible to make the CCU8x.STy signal to reflect the CC8y.ST1/CC8y.ST2 or a function of the 2 signals.
*
* \par<b>Related APIs:</b><br>
* None.
*/
void XMC_CCU8_SLICE_ConfigureStatusBitOutput(XMC_CCU8_SLICE_t *const slice, const XMC_CCU8_SLICE_STATUS_t channel);
#if (UC_SERIES != XMC45) || defined(DOXYGEN)
/**
* @param slice Constant pointer to CC8 Slice
*
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Cascades the shadow transfer operation throughout the CCU8 timer slices, by setting CSE bit in STC register.\n\n
*
* The shadow transfer enable bits needs to be set in all timer slices, that are being used in the cascaded architecture,
* at the same time. The shadow transfer enable bits, also need to be set for all slices even if the shadow values of
* some slices were not updated. It is possible to to cascade with the adjacent slices only. CC80 slice is a
* master to start the operation.
*
* \par<b>Note:</b><br>
* XMC_CCU8_EnableShadowTransfer() must be called to enable the shadow transfer of the all the slices, which needs to be
* cascaded.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer(), XMC_CCU8_SLICE_DisableCascadedShadowTransfer()<BR>.
* @note Not available for XMC4500 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableCascadedShadowTransfer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableCascadedShadowTransfer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC |= (uint32_t) CCU8_CC8_STC_CSE_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
*
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Disables the cascaded the shadow transfer operation, by clearing CSE bit in STC register.\n\n
*
* If in any slice the cascaded mode disabled, other slices from there onwards does not update the values in cascaded mode.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableCascadedShadowTransfer()<BR>.
* @note Not available for XMC4500 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableCascadedShadowTransfer(XMC_CCU8_SLICE_t *const slice)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableCascadedShadowTransfer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC &= ~(uint32_t) CCU8_CC8_STC_CSE_Msk;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param shadow_transfer_mode mode to be configured
* Use :: XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_t enum items for mode
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures when the shadow transfer has to occur, by setting STM bit in STC register.\n\n
*
* After requesting for shadow transfer mode using XMC_CCU8_EnableShadowTransfer(), actual transfer occurs based on the
* selection done using this API (i.e. on period and One match, on Period match only, on One match only).
*
* \par<b>Note:</b><br>
* This is effective when the timer is configured in centre aligned mode.
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer()<BR>
* @note Not available for XMC4500 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_SetShadowTransferMode(XMC_CCU8_SLICE_t *const slice,
const XMC_CCU8_SLICE_SHADOW_TRANSFER_MODE_t shadow_transfer_mode)
{
XMC_ASSERT("XMC_CCU8_SLICE_SetShadowTransferMode:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC = ((slice->STC) & ~(uint32_t)((uint32_t)CCU8_CC8_STC_STM_Msk << (uint32_t)CCU8_CC8_STC_STM_Pos)) |
((shadow_transfer_mode << CCU8_CC8_STC_STM_Pos) & (uint32_t)CCU8_CC8_STC_STM_Msk);
}
#endif
#if defined(CCU8V3) || defined(DOXYGEN)/* Defined for XMC1400 devices only */
/**
* @param slice Constant pointer to CC8 Slice
* @param immediate_write specifies for what fields this mode has to be applied
* Use :: XMC_CCU8_SLICE_WRITE_INTO_t enum items to create a mask of choice, using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the specified fields shadow value to be updated immediately after shadow transfer request, by setting
* IRPC, IRCC1, IRCC2, IRLC, IRDC, IRFC bits in STC register.\n\n
*
* When immediate shadow is enabled, by calling XMC_CCU8_EnableShadowTransfer() the value which are written in the
* shadow registers get updated to the actual registers immediately. \par<b>Note:</b><br>
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer()<BR>
* @note Only available for XMC1400 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_WriteImmediateAfterShadowTransfer(XMC_CCU8_SLICE_t *const slice,
const uint32_t immediate_write)
{
XMC_ASSERT("XMC_CCU8_SLICE_WriteImmediateAfterShadowTransfer:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC |= immediate_write;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param coherent_write specifies for what fields this mode has to be applied
* Use :: XMC_CCU8_SLICE_WRITE_INTO_t enum items to create a mask of choice, using a bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configures the specified fields shadow value to be updated in synchronous with PWM after shadow transfer request, by
* clearing IRPC, IRCC1, IRCC2, IRLC, IRDC, IRFC bits in STC register.\n\n
*
* When coherent shadow is enabled, after calling XMC_CCU8_EnableShadowTransfer(), the value which are written in the
* respective shadow registers get updated according the configuration done using XMC_CCU8_SLICE_SetShadowTransferMode()
* API. \par<b>Note:</b><br>
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_EnableShadowTransfer(), XMC_CCU8_SLICE_SetShadowTransferMode()<BR>
* @note Only available for XMC1400 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_WriteCoherentlyWithPWMCycle(XMC_CCU8_SLICE_t *const slice,
const uint32_t coherent_write)
{
XMC_ASSERT("XMC_CCU8_SLICE_WriteCoherentlyWithPWMCycle:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC &= ~(uint32_t)coherent_write;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param automatic_shadow_transfer specify upon which register update, automatic shadow transfer request is generated
* Use :: XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t enum items to create a mask of choice, using a
* bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configure on which shadow register update, automatic shadow transfer request generation has to be enabled. By setting
* ASPC, ASCC1, ASCC2, ASLC, ASDC, ASFC bits in STC register.\n\n
*
* By updating the configured shadow register, the shadow transfer request is generated to update all the shadow registers.
* \par<b>Note:</b><br>
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_DisableAutomaticShadowTransferRequest().
* @note Only available for XMC1400 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_EnableAutomaticShadowTransferRequest(XMC_CCU8_SLICE_t *const slice,
const uint32_t automatic_shadow_transfer)
{
XMC_ASSERT("XMC_CCU8_SLICE_EnableAutomaticShadowTransferRequest:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC |= automatic_shadow_transfer;
}
/**
* @param slice Constant pointer to CC8 Slice
* @param automatic_shadow_transfer specify upon which register update, automatic shadow transfer request should not be
* generated
* Use :: XMC_CCU8_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t enum items to create a mask of choice, using a
* bit wise OR operation.
* @return <BR>
* None<BR>
*
* \par<b>Description:</b><br>
* Configure on which shadow register update, automatic shadow transfer request generation has to be disabled. By
* clearing ASPC, ASCC1, ASCC2, ASLC, ASDC, ASFC bits in STC register.\n\n
*
* This disables the generation of automatic shadow transfer request for the specified register update.
* \par<b>Note:</b><br>
*
* \par<b>Related APIs:</b><br>
* XMC_CCU8_SLICE_EnableAutomaticShadowTransferRequest().
* @note Only available for XMC1400 series
*/
__STATIC_INLINE void XMC_CCU8_SLICE_DisableAutomaticShadowTransferRequest(XMC_CCU8_SLICE_t *const slice,
const uint32_t automatic_shadow_transfer)
{
XMC_ASSERT("XMC_CCU8_SLICE_DisableAutomaticShadowTransferRequest:Invalid Slice Pointer", XMC_CCU8_IsValidSlice(slice));
slice->STC &= ~(uint32_t)automatic_shadow_transfer;
}
#endif
#ifdef __cplusplus
}
#endif
/**
* @}
*/
/**
* @}
*/
#endif /* defined(CCU80) */
#endif /* XMC_CCU8_H */