openblt/Target/Demo/ARMCM4_XMC4_XMC4700_Relax_K.../Boot/Libraries/XMCLib/src/xmc_spi.c

280 lines
11 KiB
C

/**
* @file xmc_spi.c
* @date 2015-11-04
*
* @cond
*********************************************************************************************************************
* XMClib v2.1.12 - XMC Peripheral Driver Library
*
* Copyright (c) 2015-2017, Infineon Technologies AG
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,are permitted provided that the
* following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
* disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY,OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* To improve the quality of the software, users are encouraged to share modifications, enhancements or bug fixes with
* Infineon Technologies AG dave@infineon.com).
*********************************************************************************************************************
*
* Change History
* --------------
*
* 2015-02-20:
* - Initial <br>
*
* 2015-05-20:
* - Modified XMC_SPI_CH_Stop() API for not setting to IDLE the channel if it is busy
* - Modified XMC_SPI_CH_SetInterwordDelay() implementation in order to gain accuracy <br>
*
* 2015-06-20:
* - Removed GetDriverVersion API <br>
*
* 2015-09-01:
* - Modified XMC_SPI_CH_EnableEvent() and XMC_SPI_CH_DisableEvent() for supporting multiple events configuration <br>
*
* 2015-11-04:
* - Modified the check of XMC_USIC_CH_GetTransmitBufferStatus() in the XMC_SPI_CH_Transmit() flag <br>
* @endcond
*
*/
/**
*
* @brief SPI driver for XMC microcontroller family
*
*/
/*********************************************************************************************************************
* HEADER FILES
********************************************************************************************************************/
#include <xmc_scu.h>
#include <xmc_spi.h>
/*********************************************************************************************************************
* MACROS
********************************************************************************************************************/
#define XMC_SPI_CH_OVERSAMPLING (2UL)
/*********************************************************************************************************************
* API IMPLEMENTATION
********************************************************************************************************************/
/* Initializes the selected SPI channel with the config structure. */
void XMC_SPI_CH_Init(XMC_USIC_CH_t *const channel, const XMC_SPI_CH_CONFIG_t *const config)
{
XMC_USIC_CH_Enable(channel);
if(config->bus_mode == XMC_SPI_CH_BUS_MODE_MASTER)
{
/* Configure baud rate */
(void)XMC_USIC_CH_SetBaudrate(channel, config->baudrate, XMC_SPI_CH_OVERSAMPLING);
}
/* Configuration of USIC Shift Control */
/* Transmission Mode (TRM) = 1 */
/* Passive Data Level (PDL) = 1 */
channel->SCTR = USIC_CH_SCTR_PDL_Msk |
(0x1UL << USIC_CH_SCTR_TRM_Pos) |
(0x3fUL << USIC_CH_SCTR_FLE_Pos)|
(0x7UL << USIC_CH_SCTR_WLE_Pos);
/* Configuration of USIC Transmit Control/Status Register */
/* TBUF Data Enable (TDEN) = 1 */
/* TBUF Data Single Shot Mode (TDSSM) = 1 */
channel->TCSR = (uint32_t)(USIC_CH_TCSR_HPCMD_Msk |
(0x01UL << USIC_CH_TCSR_TDEN_Pos) |
USIC_CH_TCSR_TDSSM_Msk);
if(config->bus_mode == XMC_SPI_CH_BUS_MODE_MASTER)
{
/* Configuration of Protocol Control Register */
channel->PCR_SSCMode = (uint32_t)(USIC_CH_PCR_SSCMode_MSLSEN_Msk |
USIC_CH_PCR_SSCMode_SELCTR_Msk |
(uint32_t)config->selo_inversion |
USIC_CH_PCR_SSCMode_FEM_Msk);
}
/* Clear protocol status */
channel->PSCR = 0xFFFFFFFFUL;
/* Set parity settings */
channel->CCR = (uint32_t)config->parity_mode;
}
XMC_SPI_CH_STATUS_t XMC_SPI_CH_SetBaudrate(XMC_USIC_CH_t *const channel, const uint32_t rate)
{
XMC_SPI_CH_STATUS_t status;
status = XMC_SPI_CH_STATUS_ERROR;
if (rate <= (XMC_SCU_CLOCK_GetPeripheralClockFrequency() >> 1U))
{
if (XMC_USIC_CH_SetBaudrate(channel, rate, XMC_SPI_CH_OVERSAMPLING) == XMC_USIC_CH_STATUS_OK)
{
status = XMC_SPI_CH_STATUS_OK;
}
}
return status;
}
/* Enable the selected slave signal by setting (SELO) bits in PCR register. */
void XMC_SPI_CH_EnableSlaveSelect(XMC_USIC_CH_t *const channel, const XMC_SPI_CH_SLAVE_SELECT_t slave)
{
/* Configuration of Protocol Control Register */
channel->PCR_SSCMode &= (uint32_t)~USIC_CH_PCR_SSCMode_SELO_Msk;
channel->PCR_SSCMode |= (uint32_t)slave;
}
/* Disable the slave signals by clearing (SELO) bits in PCR register. */
void XMC_SPI_CH_DisableSlaveSelect(XMC_USIC_CH_t *const channel)
{
XMC_SPI_CH_ClearStatusFlag(channel, (uint32_t)XMC_SPI_CH_STATUS_FLAG_MSLS);
/* Configuration of Protocol Control Register */
channel->PCR_SSCMode &= (uint32_t)~USIC_CH_PCR_SSCMode_SELO_Msk;
}
/* Puts the data into FIFO if FIFO mode is enabled or else into standard buffers, by setting the proper mode. */
void XMC_SPI_CH_Transmit(XMC_USIC_CH_t *const channel, const uint16_t data, const XMC_SPI_CH_MODE_t mode)
{
channel->CCR = (channel->CCR & (uint32_t)(~USIC_CH_CCR_HPCEN_Msk)) |
(((uint32_t) mode << USIC_CH_CCR_HPCEN_Pos) & (uint32_t)USIC_CH_CCR_HPCEN_Msk);
/* Check FIFO size */
if ((channel->TBCTR & USIC_CH_TBCTR_SIZE_Msk) == 0U)
{
while((uint32_t)XMC_USIC_CH_GetTransmitBufferStatus(channel) == (uint32_t)XMC_USIC_CH_TBUF_STATUS_BUSY)
{
}
XMC_SPI_CH_ClearStatusFlag(channel, (uint32_t)XMC_SPI_CH_STATUS_FLAG_TRANSMIT_BUFFER_INDICATION);
channel->TBUF[mode] = data;
}
else
{
channel->IN[mode] = data;
}
}
/* Reads the data from the buffers based on the FIFO mode selection. */
uint16_t XMC_SPI_CH_GetReceivedData(XMC_USIC_CH_t *const channel)
{
uint16_t retval;
/* Check FIFO size */
if ((channel->RBCTR & USIC_CH_RBCTR_SIZE_Msk) == 0U)
{
retval = (uint16_t)channel->RBUF;
}
else
{
retval = (uint16_t)channel->OUTR;
}
return retval;
}
/* Configures the inter word delay by setting PCR.PCTQ1, PCR.DCTQ1 bit fields. */
void XMC_SPI_CH_SetInterwordDelay(XMC_USIC_CH_t *const channel,uint32_t tinterword_delay_us)
{
uint32_t peripheral_clock;
uint32_t pdiv;
uint32_t step;
uint32_t fFD;
uint32_t fpdiv;
uint32_t divider_factor1 = 0U;
uint32_t divider_factor2 = 32U;
uint32_t divider_factor1_int = 0U;
uint32_t divider_factor1_int_min = 4U;
uint32_t divider_factor1_frac_min =100U;
uint32_t divider_factor1_frac = 0U;
uint32_t divider_factor2_temp = 0U;
peripheral_clock = XMC_SCU_CLOCK_GetPeripheralClockFrequency();
pdiv = (uint32_t)(channel->BRG & USIC_CH_BRG_PDIV_Msk) >> USIC_CH_BRG_PDIV_Pos;
step = (uint32_t)(channel->FDR & USIC_CH_FDR_STEP_Msk) >> USIC_CH_FDR_STEP_Pos;
fFD = (uint32_t)((peripheral_clock >> 10U) * step);
fpdiv= fFD/(1U+pdiv);
if(tinterword_delay_us < (128000000/fpdiv))
{
for(divider_factor2_temp = 32U; divider_factor2_temp > 0U; --divider_factor2_temp)
{
divider_factor1 = (tinterword_delay_us*fpdiv)/(divider_factor2_temp*10000);
divider_factor1_frac = divider_factor1%100U;
if(divider_factor1_frac > 50)
{
divider_factor1_int = (divider_factor1/100U)+1;
divider_factor1_frac = (divider_factor1_int*100)-divider_factor1;
}
else
{
divider_factor1_int = (divider_factor1/100U);
}
if ((divider_factor1_int < 5U) && (divider_factor1_int > 0) && (divider_factor1_frac < divider_factor1_frac_min))
{
divider_factor1_frac_min = divider_factor1_frac;
divider_factor1_int_min = divider_factor1_int;
divider_factor2= divider_factor2_temp;
}
}
}
channel->PCR_SSCMode = (uint32_t)((channel->PCR_SSCMode) & (~(USIC_CH_PCR_SSCMode_DCTQ1_Msk |
USIC_CH_PCR_SSCMode_PCTQ1_Msk |
USIC_CH_PCR_SSCMode_CTQSEL1_Msk))) |
(((divider_factor1_int_min - 1) << USIC_CH_PCR_SSCMode_PCTQ1_Pos) & (uint32_t)USIC_CH_PCR_SSCMode_PCTQ1_Msk) |
(((divider_factor2 - 1 ) << USIC_CH_PCR_SSCMode_DCTQ1_Pos) & (uint32_t)USIC_CH_PCR_SSCMode_DCTQ1_Msk);
}
XMC_SPI_CH_STATUS_t XMC_SPI_CH_Stop(XMC_USIC_CH_t *const channel)
{
XMC_SPI_CH_STATUS_t status = XMC_SPI_CH_STATUS_OK;
if (((uint32_t)XMC_USIC_CH_GetTransmitBufferStatus(channel) & (uint32_t)XMC_USIC_CH_TBUF_STATUS_BUSY) != 0U)
{
status = XMC_SPI_CH_STATUS_BUSY;
}
else
{
/* USIC channel in IDLE mode */
XMC_USIC_CH_SetMode(channel, XMC_USIC_CH_OPERATING_MODE_IDLE);
}
return status;
}
void XMC_SPI_CH_EnableEvent(XMC_USIC_CH_t *const channel, const uint32_t event)
{
channel->CCR |= (event&0x1fc00U);
channel->PCR_SSCMode |= ((event << 13U) & 0xe000U);
}
void XMC_SPI_CH_DisableEvent(XMC_USIC_CH_t *const channel, const uint32_t event)
{
channel->CCR &= (uint32_t)~(event&0x1fc00U);
channel->PCR_SSCMode &= (uint32_t)~((event << 13U) & 0xe000U);
}