openwrt/target/linux/cns3xxx/files/drivers/net/ethernet/cavium/cns3xxx_eth.c

1355 lines
30 KiB
C
Raw Normal View History

/*
* Cavium CNS3xxx Gigabit driver for Linux
*
* Copyright 2011 Gateworks Corporation
* Chris Lang <clang@gateworks.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/platform_data/cns3xxx.h>
#include <linux/skbuff.h>
#define DRV_NAME "cns3xxx_eth"
#define RX_DESCS 256
#define TX_DESCS 128
#define TX_DESC_RESERVE 20
#define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS)
#define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS)
#define REGS_SIZE 336
#define RX_BUFFER_ALIGN 64
#define RX_BUFFER_ALIGN_MASK (~(RX_BUFFER_ALIGN - 1))
#define SKB_HEAD_ALIGN (((PAGE_SIZE - NET_SKB_PAD) % RX_BUFFER_ALIGN) + NET_SKB_PAD + NET_IP_ALIGN)
#define RX_SEGMENT_ALLOC_SIZE 2048
#define RX_SEGMENT_BUFSIZE (SKB_WITH_OVERHEAD(RX_SEGMENT_ALLOC_SIZE))
#define RX_SEGMENT_MRU (((RX_SEGMENT_BUFSIZE - SKB_HEAD_ALIGN) & RX_BUFFER_ALIGN_MASK) - NET_IP_ALIGN)
#define MAX_MTU 9500
#define NAPI_WEIGHT 64
/* MDIO Defines */
#define MDIO_CMD_COMPLETE 0x00008000
#define MDIO_WRITE_COMMAND 0x00002000
#define MDIO_READ_COMMAND 0x00004000
#define MDIO_REG_OFFSET 8
#define MDIO_VALUE_OFFSET 16
/* Descritor Defines */
#define END_OF_RING 0x40000000
#define FIRST_SEGMENT 0x20000000
#define LAST_SEGMENT 0x10000000
#define FORCE_ROUTE 0x04000000
#define IP_CHECKSUM 0x00040000
#define UDP_CHECKSUM 0x00020000
#define TCP_CHECKSUM 0x00010000
/* Port Config Defines */
#define PORT_BP_ENABLE 0x00020000
#define PORT_DISABLE 0x00040000
#define PORT_LEARN_DIS 0x00080000
#define PORT_BLOCK_STATE 0x00100000
#define PORT_BLOCK_MODE 0x00200000
#define PROMISC_OFFSET 29
/* Global Config Defines */
#define UNKNOWN_VLAN_TO_CPU 0x02000000
#define ACCEPT_CRC_PACKET 0x00200000
#define CRC_STRIPPING 0x00100000
/* VLAN Config Defines */
#define NIC_MODE 0x00008000
#define VLAN_UNAWARE 0x00000001
/* DMA AUTO Poll Defines */
#define TS_POLL_EN 0x00000020
#define TS_SUSPEND 0x00000010
#define FS_POLL_EN 0x00000002
#define FS_SUSPEND 0x00000001
/* DMA Ring Control Defines */
#define QUEUE_THRESHOLD 0x000000f0
#define CLR_FS_STATE 0x80000000
/* Interrupt Status Defines */
#define MAC0_STATUS_CHANGE 0x00004000
#define MAC1_STATUS_CHANGE 0x00008000
#define MAC2_STATUS_CHANGE 0x00010000
#define MAC0_RX_ERROR 0x00100000
#define MAC1_RX_ERROR 0x00200000
#define MAC2_RX_ERROR 0x00400000
struct tx_desc
{
u32 sdp; /* segment data pointer */
union {
struct {
u32 sdl:16; /* segment data length */
u32 tco:1;
u32 uco:1;
u32 ico:1;
u32 rsv_1:3; /* reserve */
u32 pri:3;
u32 fp:1; /* force priority */
u32 fr:1;
u32 interrupt:1;
u32 lsd:1;
u32 fsd:1;
u32 eor:1;
u32 cown:1;
};
u32 config0;
};
union {
struct {
u32 ctv:1;
u32 stv:1;
u32 sid:4;
u32 inss:1;
u32 dels:1;
u32 rsv_2:9;
u32 pmap:5;
u32 mark:3;
u32 ewan:1;
u32 fewan:1;
u32 rsv_3:5;
};
u32 config1;
};
union {
struct {
u32 c_vid:12;
u32 c_cfs:1;
u32 c_pri:3;
u32 s_vid:12;
u32 s_dei:1;
u32 s_pri:3;
};
u32 config2;
};
u8 alignment[16]; /* for 32 byte */
};
struct rx_desc
{
u32 sdp; /* segment data pointer */
union {
struct {
u32 sdl:16; /* segment data length */
u32 l4f:1;
u32 ipf:1;
u32 prot:4;
u32 hr:6;
u32 lsd:1;
u32 fsd:1;
u32 eor:1;
u32 cown:1;
};
u32 config0;
};
union {
struct {
u32 ctv:1;
u32 stv:1;
u32 unv:1;
u32 iwan:1;
u32 exdv:1;
u32 e_wan:1;
u32 rsv_1:2;
u32 sp:3;
u32 crc_err:1;
u32 un_eth:1;
u32 tc:2;
u32 rsv_2:1;
u32 ip_offset:5;
u32 rsv_3:11;
};
u32 config1;
};
union {
struct {
u32 c_vid:12;
u32 c_cfs:1;
u32 c_pri:3;
u32 s_vid:12;
u32 s_dei:1;
u32 s_pri:3;
};
u32 config2;
};
u8 alignment[16]; /* for 32 byte alignment */
};
struct switch_regs {
u32 phy_control;
u32 phy_auto_addr;
u32 mac_glob_cfg;
u32 mac_cfg[4];
u32 mac_pri_ctrl[5], __res;
u32 etype[2];
u32 udp_range[4];
u32 prio_etype_udp;
u32 prio_ipdscp[8];
u32 tc_ctrl;
u32 rate_ctrl;
u32 fc_glob_thrs;
u32 fc_port_thrs;
u32 mc_fc_glob_thrs;
u32 dc_glob_thrs;
u32 arl_vlan_cmd;
u32 arl_ctrl[3];
u32 vlan_cfg;
u32 pvid[2];
u32 vlan_ctrl[3];
u32 session_id[8];
u32 intr_stat;
u32 intr_mask;
u32 sram_test;
u32 mem_queue;
u32 farl_ctrl;
u32 fc_input_thrs, __res1[2];
u32 clk_skew_ctrl;
u32 mac_glob_cfg_ext, __res2[2];
u32 dma_ring_ctrl;
u32 dma_auto_poll_cfg;
u32 delay_intr_cfg, __res3;
u32 ts_dma_ctrl0;
u32 ts_desc_ptr0;
u32 ts_desc_base_addr0, __res4;
u32 fs_dma_ctrl0;
u32 fs_desc_ptr0;
u32 fs_desc_base_addr0, __res5;
u32 ts_dma_ctrl1;
u32 ts_desc_ptr1;
u32 ts_desc_base_addr1, __res6;
u32 fs_dma_ctrl1;
u32 fs_desc_ptr1;
u32 fs_desc_base_addr1;
u32 __res7[109];
u32 mac_counter0[13];
};
struct _tx_ring {
struct tx_desc *desc;
dma_addr_t phys_addr;
struct tx_desc *cur_addr;
struct sk_buff *buff_tab[TX_DESCS];
unsigned int phys_tab[TX_DESCS];
u32 free_index;
u32 count_index;
u32 cur_index;
int num_used;
int num_count;
bool stopped;
};
struct _rx_ring {
struct rx_desc *desc;
dma_addr_t phys_addr;
struct rx_desc *cur_addr;
void *buff_tab[RX_DESCS];
unsigned int phys_tab[RX_DESCS];
u32 cur_index;
u32 alloc_index;
int alloc_count;
};
struct sw {
struct switch_regs __iomem *regs;
struct napi_struct napi;
struct cns3xxx_plat_info *plat;
struct _tx_ring tx_ring;
struct _rx_ring rx_ring;
struct sk_buff *frag_first;
struct sk_buff *frag_last;
int rx_irq;
int stat_irq;
};
struct port {
struct net_device *netdev;
struct phy_device *phydev;
struct sw *sw;
int id; /* logical port ID */
int speed, duplex;
};
static spinlock_t mdio_lock;
static DEFINE_SPINLOCK(tx_lock);
static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */
struct mii_bus *mdio_bus;
static int ports_open;
static struct port *switch_port_tab[4];
static struct dma_pool *rx_dma_pool;
static struct dma_pool *tx_dma_pool;
struct net_device *napi_dev;
static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
int write, u16 cmd)
{
int cycles = 0;
u32 temp = 0;
temp = __raw_readl(&mdio_regs->phy_control);
temp |= MDIO_CMD_COMPLETE;
__raw_writel(temp, &mdio_regs->phy_control);
udelay(10);
if (write) {
temp = (cmd << MDIO_VALUE_OFFSET);
temp |= MDIO_WRITE_COMMAND;
} else {
temp = MDIO_READ_COMMAND;
}
temp |= ((location & 0x1f) << MDIO_REG_OFFSET);
temp |= (phy_id & 0x1f);
__raw_writel(temp, &mdio_regs->phy_control);
while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0)
&& cycles < 5000) {
udelay(1);
cycles++;
}
if (cycles == 5000) {
printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name,
phy_id);
return -1;
}
temp = __raw_readl(&mdio_regs->phy_control);
temp |= MDIO_CMD_COMPLETE;
__raw_writel(temp, &mdio_regs->phy_control);
if (write)
return 0;
return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF);
}
static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&mdio_lock, flags);
ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0);
spin_unlock_irqrestore(&mdio_lock, flags);
return ret;
}
static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location,
u16 val)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&mdio_lock, flags);
ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val);
spin_unlock_irqrestore(&mdio_lock, flags);
return ret;
}
static int cns3xxx_mdio_register(void __iomem *base)
{
int err;
if (!(mdio_bus = mdiobus_alloc()))
return -ENOMEM;
mdio_regs = base;
spin_lock_init(&mdio_lock);
mdio_bus->name = "CNS3xxx MII Bus";
mdio_bus->read = &cns3xxx_mdio_read;
mdio_bus->write = &cns3xxx_mdio_write;
strcpy(mdio_bus->id, "0");
if ((err = mdiobus_register(mdio_bus)))
mdiobus_free(mdio_bus);
return err;
}
static void cns3xxx_mdio_remove(void)
{
mdiobus_unregister(mdio_bus);
mdiobus_free(mdio_bus);
}
static void enable_tx_dma(struct sw *sw)
{
__raw_writel(0x1, &sw->regs->ts_dma_ctrl0);
}
static void enable_rx_dma(struct sw *sw)
{
__raw_writel(0x1, &sw->regs->fs_dma_ctrl0);
}
static void cns3xxx_adjust_link(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct phy_device *phydev = port->phydev;
if (!phydev->link) {
if (port->speed) {
port->speed = 0;
printk(KERN_INFO "%s: link down\n", dev->name);
}
return;
}
if (port->speed == phydev->speed && port->duplex == phydev->duplex)
return;
port->speed = phydev->speed;
port->duplex = phydev->duplex;
printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
dev->name, port->speed, port->duplex ? "full" : "half");
}
static void eth_schedule_poll(struct sw *sw)
{
if (unlikely(!napi_schedule_prep(&sw->napi)))
return;
disable_irq_nosync(sw->rx_irq);
__napi_schedule(&sw->napi);
}
irqreturn_t eth_rx_irq(int irq, void *pdev)
{
struct net_device *dev = pdev;
struct sw *sw = netdev_priv(dev);
eth_schedule_poll(sw);
return (IRQ_HANDLED);
}
irqreturn_t eth_stat_irq(int irq, void *pdev)
{
struct net_device *dev = pdev;
struct sw *sw = netdev_priv(dev);
u32 cfg;
u32 stat = __raw_readl(&sw->regs->intr_stat);
__raw_writel(0xffffffff, &sw->regs->intr_stat);
if (stat & MAC2_RX_ERROR)
switch_port_tab[3]->netdev->stats.rx_dropped++;
if (stat & MAC1_RX_ERROR)
switch_port_tab[1]->netdev->stats.rx_dropped++;
if (stat & MAC0_RX_ERROR)
switch_port_tab[0]->netdev->stats.rx_dropped++;
if (stat & MAC0_STATUS_CHANGE) {
cfg = __raw_readl(&sw->regs->mac_cfg[0]);
switch_port_tab[0]->phydev->link = (cfg & 0x1);
switch_port_tab[0]->phydev->duplex = ((cfg >> 4) & 0x1);
if (((cfg >> 2) & 0x3) == 2)
switch_port_tab[0]->phydev->speed = 1000;
else if (((cfg >> 2) & 0x3) == 1)
switch_port_tab[0]->phydev->speed = 100;
else
switch_port_tab[0]->phydev->speed = 10;
cns3xxx_adjust_link(switch_port_tab[0]->netdev);
}
if (stat & MAC1_STATUS_CHANGE) {
cfg = __raw_readl(&sw->regs->mac_cfg[1]);
switch_port_tab[1]->phydev->link = (cfg & 0x1);
switch_port_tab[1]->phydev->duplex = ((cfg >> 4) & 0x1);
if (((cfg >> 2) & 0x3) == 2)
switch_port_tab[1]->phydev->speed = 1000;
else if (((cfg >> 2) & 0x3) == 1)
switch_port_tab[1]->phydev->speed = 100;
else
switch_port_tab[1]->phydev->speed = 10;
cns3xxx_adjust_link(switch_port_tab[1]->netdev);
}
if (stat & MAC2_STATUS_CHANGE) {
cfg = __raw_readl(&sw->regs->mac_cfg[3]);
switch_port_tab[3]->phydev->link = (cfg & 0x1);
switch_port_tab[3]->phydev->duplex = ((cfg >> 4) & 0x1);
if (((cfg >> 2) & 0x3) == 2)
switch_port_tab[3]->phydev->speed = 1000;
else if (((cfg >> 2) & 0x3) == 1)
switch_port_tab[3]->phydev->speed = 100;
else
switch_port_tab[3]->phydev->speed = 10;
cns3xxx_adjust_link(switch_port_tab[3]->netdev);
}
return (IRQ_HANDLED);
}
static void cns3xxx_alloc_rx_buf(struct sw *sw, int received)
{
struct _rx_ring *rx_ring = &sw->rx_ring;
unsigned int i = rx_ring->alloc_index;
struct rx_desc *desc = &(rx_ring)->desc[i];
void *buf;
unsigned int phys;
for (received += rx_ring->alloc_count; received > 0; received--) {
buf = kmalloc(RX_SEGMENT_ALLOC_SIZE, GFP_ATOMIC);
if (!buf)
break;
phys = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
RX_SEGMENT_MRU, DMA_FROM_DEVICE);
if (dma_mapping_error(NULL, phys)) {
kfree(buf);
break;
}
desc->sdl = RX_SEGMENT_MRU;
desc->sdp = phys;
wmb();
/* put the new buffer on RX-free queue */
rx_ring->buff_tab[i] = buf;
rx_ring->phys_tab[i] = phys;
if (i == RX_DESCS - 1) {
i = 0;
desc->config0 = END_OF_RING | FIRST_SEGMENT |
LAST_SEGMENT | RX_SEGMENT_MRU;
desc = &(rx_ring)->desc[i];
} else {
desc->config0 = FIRST_SEGMENT | LAST_SEGMENT |
RX_SEGMENT_MRU;
i++;
desc++;
}
}
rx_ring->alloc_count = received;
rx_ring->alloc_index = i;
}
static void eth_check_num_used(struct _tx_ring *tx_ring)
{
bool stop = false;
int i;
if (tx_ring->num_used >= TX_DESCS - TX_DESC_RESERVE)
stop = true;
if (tx_ring->stopped == stop)
return;
tx_ring->stopped = stop;
for (i = 0; i < 4; i++) {
struct port *port = switch_port_tab[i];
struct net_device *dev;
if (!port)
continue;
dev = port->netdev;
if (stop)
netif_stop_queue(dev);
else
netif_wake_queue(dev);
}
}
static void eth_complete_tx(struct sw *sw)
{
struct _tx_ring *tx_ring = &sw->tx_ring;
struct tx_desc *desc;
int i;
int index;
int num_used = tx_ring->num_used;
struct sk_buff *skb;
index = tx_ring->free_index;
desc = &(tx_ring)->desc[index];
for (i = 0; i < num_used; i++) {
if (desc->cown) {
skb = tx_ring->buff_tab[index];
tx_ring->buff_tab[index] = 0;
if (skb)
dev_kfree_skb_any(skb);
dma_unmap_single(NULL, tx_ring->phys_tab[index],
desc->sdl, DMA_TO_DEVICE);
if (++index == TX_DESCS) {
index = 0;
desc = &(tx_ring)->desc[index];
} else {
desc++;
}
} else {
break;
}
}
tx_ring->free_index = index;
tx_ring->num_used -= i;
eth_check_num_used(tx_ring);
}
static int eth_poll(struct napi_struct *napi, int budget)
{
struct sw *sw = container_of(napi, struct sw, napi);
struct _rx_ring *rx_ring = &sw->rx_ring;
int received = 0;
unsigned int length;
unsigned int i = rx_ring->cur_index;
struct rx_desc *desc = &(rx_ring)->desc[i];
unsigned int alloc_count = rx_ring->alloc_count;
while (desc->cown && alloc_count + received < RX_DESCS - 1) {
struct sk_buff *skb;
int reserve = SKB_HEAD_ALIGN;
if (received >= budget)
break;
/* process received frame */
dma_unmap_single(NULL, rx_ring->phys_tab[i],
RX_SEGMENT_MRU, DMA_FROM_DEVICE);
skb = build_skb(rx_ring->buff_tab[i], 0);
if (!skb)
break;
skb->dev = switch_port_tab[desc->sp]->netdev;
length = desc->sdl;
if (desc->fsd && !desc->lsd)
length = RX_SEGMENT_MRU;
if (!desc->fsd) {
reserve -= NET_IP_ALIGN;
if (!desc->lsd)
length += NET_IP_ALIGN;
}
skb_reserve(skb, reserve);
skb_put(skb, length);
if (!sw->frag_first)
sw->frag_first = skb;
else {
if (sw->frag_first == sw->frag_last)
skb_frag_add_head(sw->frag_first, skb);
else
sw->frag_last->next = skb;
sw->frag_first->len += skb->len;
sw->frag_first->data_len += skb->len;
sw->frag_first->truesize += skb->truesize;
}
sw->frag_last = skb;
if (desc->lsd) {
struct net_device *dev;
skb = sw->frag_first;
dev = skb->dev;
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
/* RX Hardware checksum offload */
skb->ip_summed = CHECKSUM_NONE;
switch (desc->prot) {
case 1:
case 2:
case 5:
case 6:
case 13:
case 14:
if (!desc->l4f) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
napi_gro_receive(napi, skb);
break;
}
/* fall through */
default:
netif_receive_skb(skb);
break;
}
sw->frag_first = NULL;
sw->frag_last = NULL;
}
received++;
if (++i == RX_DESCS) {
i = 0;
desc = &(rx_ring)->desc[i];
} else {
desc++;
}
}
rx_ring->cur_index = i;
if (!received) {
napi_complete(napi);
enable_irq(sw->rx_irq);
/* if rx descriptors are full schedule another poll */
if (rx_ring->desc[(i-1) & (RX_DESCS-1)].cown)
eth_schedule_poll(sw);
}
spin_lock_bh(&tx_lock);
eth_complete_tx(sw);
spin_unlock_bh(&tx_lock);
cns3xxx_alloc_rx_buf(sw, received);
wmb();
enable_rx_dma(sw);
return received;
}
static void eth_set_desc(struct _tx_ring *tx_ring, int index, int index_last,
void *data, int len, u32 config0, u32 pmap)
{
struct tx_desc *tx_desc = &(tx_ring)->desc[index];
unsigned int phys;
phys = dma_map_single(NULL, data, len, DMA_TO_DEVICE);
tx_desc->sdp = phys;
tx_desc->pmap = pmap;
tx_ring->phys_tab[index] = phys;
config0 |= len;
if (index == TX_DESCS - 1)
config0 |= END_OF_RING;
if (index == index_last)
config0 |= LAST_SEGMENT;
wmb();
tx_desc->config0 = config0;
}
static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct sw *sw = port->sw;
struct _tx_ring *tx_ring = &sw->tx_ring;
struct sk_buff *skb1;
char pmap = (1 << port->id);
int nr_frags = skb_shinfo(skb)->nr_frags;
int nr_desc = nr_frags;
int index0, index, index_last;
int len0;
unsigned int i;
u32 config0;
if (pmap == 8)
pmap = (1 << 4);
skb_walk_frags(skb, skb1)
nr_desc++;
eth_schedule_poll(sw);
spin_lock_bh(&tx_lock);
if ((tx_ring->num_used + nr_desc + 1) >= TX_DESCS) {
spin_unlock_bh(&tx_lock);
return NETDEV_TX_BUSY;
}
index = index0 = tx_ring->cur_index;
index_last = (index0 + nr_desc) % TX_DESCS;
tx_ring->cur_index = (index_last + 1) % TX_DESCS;
spin_unlock_bh(&tx_lock);
config0 = FORCE_ROUTE;
if (skb->ip_summed == CHECKSUM_PARTIAL)
config0 |= UDP_CHECKSUM | TCP_CHECKSUM;
len0 = skb->len;
/* fragments */
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag;
void *addr;
index = (index + 1) % TX_DESCS;
frag = &skb_shinfo(skb)->frags[i];
addr = page_address(skb_frag_page(frag)) + frag->page_offset;
eth_set_desc(tx_ring, index, index_last, addr, frag->size,
config0, pmap);
}
if (nr_frags)
len0 = skb->len - skb->data_len;
skb_walk_frags(skb, skb1) {
index = (index + 1) % TX_DESCS;
len0 -= skb1->len;
eth_set_desc(tx_ring, index, index_last, skb1->data, skb1->len,
config0, pmap);
}
tx_ring->buff_tab[index0] = skb;
eth_set_desc(tx_ring, index0, index_last, skb->data, len0,
config0 | FIRST_SEGMENT, pmap);
wmb();
spin_lock(&tx_lock);
tx_ring->num_used += nr_desc + 1;
spin_unlock(&tx_lock);
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
enable_tx_dma(sw);
return NETDEV_TX_OK;
}
static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct port *port = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return phy_mii_ioctl(port->phydev, req, cmd);
}
/* ethtool support */
static void cns3xxx_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_NAME);
strcpy(info->bus_info, "internal");
}
static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct port *port = netdev_priv(dev);
return phy_ethtool_gset(port->phydev, cmd);
}
static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct port *port = netdev_priv(dev);
return phy_ethtool_sset(port->phydev, cmd);
}
static int cns3xxx_nway_reset(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
return phy_start_aneg(port->phydev);
}
static struct ethtool_ops cns3xxx_ethtool_ops = {
.get_drvinfo = cns3xxx_get_drvinfo,
.get_settings = cns3xxx_get_settings,
.set_settings = cns3xxx_set_settings,
.nway_reset = cns3xxx_nway_reset,
.get_link = ethtool_op_get_link,
};
static int init_rings(struct sw *sw)
{
int i;
struct _rx_ring *rx_ring = &sw->rx_ring;
struct _tx_ring *tx_ring = &sw->tx_ring;
__raw_writel(0, &sw->regs->fs_dma_ctrl0);
__raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg);
__raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
__raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
__raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl);
if (!(rx_dma_pool = dma_pool_create(DRV_NAME, NULL,
RX_POOL_ALLOC_SIZE, 32, 0)))
return -ENOMEM;
if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL,
&rx_ring->phys_addr)))
return -ENOMEM;
memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE);
/* Setup RX buffers */
for (i = 0; i < RX_DESCS; i++) {
struct rx_desc *desc = &(rx_ring)->desc[i];
void *buf;
buf = kzalloc(RX_SEGMENT_ALLOC_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
desc->sdl = RX_SEGMENT_MRU;
if (i == (RX_DESCS - 1))
desc->eor = 1;
desc->fsd = 1;
desc->lsd = 1;
desc->sdp = dma_map_single(NULL, buf + SKB_HEAD_ALIGN,
RX_SEGMENT_MRU, DMA_FROM_DEVICE);
if (dma_mapping_error(NULL, desc->sdp))
return -EIO;
rx_ring->buff_tab[i] = buf;
rx_ring->phys_tab[i] = desc->sdp;
desc->cown = 0;
}
__raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0);
__raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0);
if (!(tx_dma_pool = dma_pool_create(DRV_NAME, NULL,
TX_POOL_ALLOC_SIZE, 32, 0)))
return -ENOMEM;
if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL,
&tx_ring->phys_addr)))
return -ENOMEM;
memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE);
/* Setup TX buffers */
for (i = 0; i < TX_DESCS; i++) {
struct tx_desc *desc = &(tx_ring)->desc[i];
tx_ring->buff_tab[i] = 0;
if (i == (TX_DESCS - 1))
desc->eor = 1;
desc->cown = 1;
}
__raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0);
__raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0);
return 0;
}
static void destroy_rings(struct sw *sw)
{
int i;
if (sw->rx_ring.desc) {
for (i = 0; i < RX_DESCS; i++) {
struct _rx_ring *rx_ring = &sw->rx_ring;
struct rx_desc *desc = &(rx_ring)->desc[i];
struct sk_buff *skb = sw->rx_ring.buff_tab[i];
if (!skb)
continue;
dma_unmap_single(NULL, desc->sdp, RX_SEGMENT_MRU,
DMA_FROM_DEVICE);
dev_kfree_skb(skb);
}
dma_pool_free(rx_dma_pool, sw->rx_ring.desc, sw->rx_ring.phys_addr);
dma_pool_destroy(rx_dma_pool);
rx_dma_pool = 0;
sw->rx_ring.desc = 0;
}
if (sw->tx_ring.desc) {
for (i = 0; i < TX_DESCS; i++) {
struct _tx_ring *tx_ring = &sw->tx_ring;
struct tx_desc *desc = &(tx_ring)->desc[i];
struct sk_buff *skb = sw->tx_ring.buff_tab[i];
if (skb) {
dma_unmap_single(NULL, desc->sdp,
skb->len, DMA_TO_DEVICE);
dev_kfree_skb(skb);
}
}
dma_pool_free(tx_dma_pool, sw->tx_ring.desc, sw->tx_ring.phys_addr);
dma_pool_destroy(tx_dma_pool);
tx_dma_pool = 0;
sw->tx_ring.desc = 0;
}
}
static int eth_open(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct sw *sw = port->sw;
u32 temp;
port->speed = 0; /* force "link up" message */
phy_start(port->phydev);
netif_start_queue(dev);
if (!ports_open) {
request_irq(sw->rx_irq, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev);
request_irq(sw->stat_irq, eth_stat_irq, IRQF_SHARED, "gig_stat", napi_dev);
napi_enable(&sw->napi);
netif_start_queue(napi_dev);
__raw_writel(~(MAC0_STATUS_CHANGE | MAC1_STATUS_CHANGE | MAC2_STATUS_CHANGE |
MAC0_RX_ERROR | MAC1_RX_ERROR | MAC2_RX_ERROR), &sw->regs->intr_mask);
temp = __raw_readl(&sw->regs->mac_cfg[2]);
temp &= ~(PORT_DISABLE);
__raw_writel(temp, &sw->regs->mac_cfg[2]);
temp = __raw_readl(&sw->regs->dma_auto_poll_cfg);
temp &= ~(TS_SUSPEND | FS_SUSPEND);
__raw_writel(temp, &sw->regs->dma_auto_poll_cfg);
enable_rx_dma(sw);
}
temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
temp &= ~(PORT_DISABLE);
__raw_writel(temp, &sw->regs->mac_cfg[port->id]);
ports_open++;
netif_carrier_on(dev);
return 0;
}
static int eth_close(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct sw *sw = port->sw;
u32 temp;
ports_open--;
temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
temp |= (PORT_DISABLE);
__raw_writel(temp, &sw->regs->mac_cfg[port->id]);
netif_stop_queue(dev);
phy_stop(port->phydev);
if (!ports_open) {
disable_irq(sw->rx_irq);
free_irq(sw->rx_irq, napi_dev);
disable_irq(sw->stat_irq);
free_irq(sw->stat_irq, napi_dev);
napi_disable(&sw->napi);
netif_stop_queue(napi_dev);
temp = __raw_readl(&sw->regs->mac_cfg[2]);
temp |= (PORT_DISABLE);
__raw_writel(temp, &sw->regs->mac_cfg[2]);
__raw_writel(TS_SUSPEND | FS_SUSPEND,
&sw->regs->dma_auto_poll_cfg);
}
netif_carrier_off(dev);
return 0;
}
static void eth_rx_mode(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct sw *sw = port->sw;
u32 temp;
temp = __raw_readl(&sw->regs->mac_glob_cfg);
if (dev->flags & IFF_PROMISC) {
if (port->id == 3)
temp |= ((1 << 2) << PROMISC_OFFSET);
else
temp |= ((1 << port->id) << PROMISC_OFFSET);
} else {
if (port->id == 3)
temp &= ~((1 << 2) << PROMISC_OFFSET);
else
temp &= ~((1 << port->id) << PROMISC_OFFSET);
}
__raw_writel(temp, &sw->regs->mac_glob_cfg);
}
static int eth_set_mac(struct net_device *netdev, void *p)
{
struct port *port = netdev_priv(netdev);
struct sw *sw = port->sw;
struct sockaddr *addr = p;
u32 cycles = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* Invalidate old ARL Entry */
if (port->id == 3)
__raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
else
__raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
__raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) |
(netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])),
&sw->regs->arl_ctrl[1]);
__raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) |
(1 << 1)),
&sw->regs->arl_ctrl[2]);
__raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
&& cycles < 5000) {
udelay(1);
cycles++;
}
cycles = 0;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
if (port->id == 3)
__raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
else
__raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]);
__raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) |
(addr->sa_data[2] << 8) | (addr->sa_data[3])),
&sw->regs->arl_ctrl[1]);
__raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) |
(7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]);
__raw_writel((1 << 19), &sw->regs->arl_vlan_cmd);
while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0)
&& cycles < 5000) {
udelay(1);
cycles++;
}
return 0;
}
static int cns3xxx_change_mtu(struct net_device *dev, int new_mtu)
{
if (new_mtu > MAX_MTU)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static const struct net_device_ops cns3xxx_netdev_ops = {
.ndo_open = eth_open,
.ndo_stop = eth_close,
.ndo_start_xmit = eth_xmit,
.ndo_set_rx_mode = eth_rx_mode,
.ndo_do_ioctl = eth_ioctl,
.ndo_change_mtu = cns3xxx_change_mtu,
.ndo_set_mac_address = eth_set_mac,
.ndo_validate_addr = eth_validate_addr,
};
static int eth_init_one(struct platform_device *pdev)
{
int i;
struct port *port;
struct sw *sw;
struct net_device *dev;
struct cns3xxx_plat_info *plat = pdev->dev.platform_data;
char phy_id[MII_BUS_ID_SIZE + 3];
int err;
u32 temp;
struct resource *res;
void __iomem *regs;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
err = cns3xxx_mdio_register(regs);
if (err)
return err;
if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) {
err = -ENOMEM;
goto err_remove_mdio;
}
strcpy(napi_dev->name, "switch%d");
napi_dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
SET_NETDEV_DEV(napi_dev, &pdev->dev);
sw = netdev_priv(napi_dev);
memset(sw, 0, sizeof(struct sw));
sw->regs = regs;
sw->rx_irq = platform_get_irq_byname(pdev, "eth_rx");
sw->stat_irq = platform_get_irq_byname(pdev, "eth_stat");
temp = __raw_readl(&sw->regs->phy_auto_addr);
temp |= (3 << 30); /* maximum frame length: 9600 bytes */
__raw_writel(temp, &sw->regs->phy_auto_addr);
for (i = 0; i < 4; i++) {
temp = __raw_readl(&sw->regs->mac_cfg[i]);
temp |= (PORT_DISABLE);
__raw_writel(temp, &sw->regs->mac_cfg[i]);
}
temp = PORT_DISABLE;
__raw_writel(temp, &sw->regs->mac_cfg[2]);
temp = __raw_readl(&sw->regs->vlan_cfg);
temp |= NIC_MODE | VLAN_UNAWARE;
__raw_writel(temp, &sw->regs->vlan_cfg);
__raw_writel(UNKNOWN_VLAN_TO_CPU |
CRC_STRIPPING, &sw->regs->mac_glob_cfg);
if ((err = init_rings(sw)) != 0) {
destroy_rings(sw);
err = -ENOMEM;
goto err_free;
}
platform_set_drvdata(pdev, napi_dev);
netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT);
for (i = 0; i < 3; i++) {
if (!(plat->ports & (1 << i))) {
continue;
}
if (!(dev = alloc_etherdev(sizeof(struct port)))) {
goto free_ports;
}
port = netdev_priv(dev);
port->netdev = dev;
if (i == 2)
port->id = 3;
else
port->id = i;
port->sw = sw;
temp = __raw_readl(&sw->regs->mac_cfg[port->id]);
temp |= (PORT_DISABLE | PORT_BLOCK_STATE | PORT_LEARN_DIS);
__raw_writel(temp, &sw->regs->mac_cfg[port->id]);
dev->netdev_ops = &cns3xxx_netdev_ops;
dev->ethtool_ops = &cns3xxx_ethtool_ops;
dev->tx_queue_len = 1000;
dev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST;
switch_port_tab[port->id] = port;
memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN);
snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]);
port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link,
PHY_INTERFACE_MODE_RGMII);
if ((err = IS_ERR(port->phydev))) {
switch_port_tab[port->id] = 0;
free_netdev(dev);
goto free_ports;
}
port->phydev->irq = PHY_IGNORE_INTERRUPT;
if ((err = register_netdev(dev))) {
phy_disconnect(port->phydev);
switch_port_tab[port->id] = 0;
free_netdev(dev);
goto free_ports;
}
printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]);
netif_carrier_off(dev);
dev = 0;
}
return 0;
free_ports:
err = -ENOMEM;
for (--i; i >= 0; i--) {
if (switch_port_tab[i]) {
port = switch_port_tab[i];
dev = port->netdev;
unregister_netdev(dev);
phy_disconnect(port->phydev);
switch_port_tab[i] = 0;
free_netdev(dev);
}
}
err_free:
free_netdev(napi_dev);
err_remove_mdio:
cns3xxx_mdio_remove();
return err;
}
static int eth_remove_one(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct sw *sw = netdev_priv(dev);
int i;
destroy_rings(sw);
for (i = 3; i >= 0; i--) {
if (switch_port_tab[i]) {
struct port *port = switch_port_tab[i];
struct net_device *dev = port->netdev;
unregister_netdev(dev);
phy_disconnect(port->phydev);
switch_port_tab[i] = 0;
free_netdev(dev);
}
}
free_netdev(napi_dev);
cns3xxx_mdio_remove();
return 0;
}
static struct platform_driver cns3xxx_eth_driver = {
.driver.name = DRV_NAME,
.probe = eth_init_one,
.remove = eth_remove_one,
};
static int __init eth_init_module(void)
{
return platform_driver_register(&cns3xxx_eth_driver);
}
static void __exit eth_cleanup_module(void)
{
platform_driver_unregister(&cns3xxx_eth_driver);
}
module_init(eth_init_module);
module_exit(eth_cleanup_module);
MODULE_AUTHOR("Chris Lang");
MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:cns3xxx_eth");