/* * linux/arch/arm/mach-cns3xxx/platsmp.c * * Copyright (C) 2002 ARM Ltd. * Copyright 2012 Gateworks Corporation * Chris Lang * Tim Harvey * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "cns3xxx.h" static struct fiq_handler fh = { .name = "cns3xxx-fiq" }; struct fiq_req { union { struct { const void *addr; size_t size; } map; struct { const void *addr; size_t size; } unmap; struct { const void *start; const void *end; } flush; }; volatile uint flags; void __iomem *reg; } ____cacheline_aligned; extern unsigned int fiq_number[2]; DEFINE_PER_CPU(struct fiq_req, fiq_data); #define FIQ_ENABLED 0x80000000 #define FIQ_GENERATE 0x00010000 #define CNS3XXX_MAP_AREA 0x01000000 #define CNS3XXX_UNMAP_AREA 0x02000000 #define CNS3XXX_FLUSH_RANGE 0x03000000 extern void cns3xxx_secondary_startup(void); extern unsigned char cns3xxx_fiq_start, cns3xxx_fiq_end; #define SCU_CPU_STATUS 0x08 static void __iomem *scu_base; static inline void __cpuinit cns3xxx_set_fiq_regs(unsigned int cpu) { struct pt_regs FIQ_regs; struct fiq_req *fiq_req = &per_cpu(fiq_data, !cpu); FIQ_regs.ARM_r8 = 0; FIQ_regs.ARM_ip = (unsigned int)fiq_req; FIQ_regs.ARM_sp = (int) MISC_FIQ_CPU(!cpu); fiq_req->reg = MISC_FIQ_CPU(!cpu); set_fiq_regs(&FIQ_regs); } static void __init cns3xxx_init_fiq(void) { void *fiqhandler_start; unsigned int fiqhandler_length; int ret; fiqhandler_start = &cns3xxx_fiq_start; fiqhandler_length = &cns3xxx_fiq_end - &cns3xxx_fiq_start; ret = claim_fiq(&fh); if (ret) return; set_fiq_handler(fiqhandler_start, fiqhandler_length); } /* * Write pen_release in a way that is guaranteed to be visible to all * observers, irrespective of whether they're taking part in coherency * or not. This is necessary for the hotplug code to work reliably. */ static void __cpuinit write_pen_release(int val) { pen_release = val; smp_wmb(); __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); } static DEFINE_SPINLOCK(boot_lock); static void __cpuinit cns3xxx_secondary_init(unsigned int cpu) { /* * Setup Secondary Core FIQ regs */ cns3xxx_set_fiq_regs(1); /* * let the primary processor know we're out of the * pen, then head off into the C entry point */ write_pen_release(-1); /* * Synchronise with the boot thread. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } static int __cpuinit cns3xxx_boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; /* * Set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* * The secondary processor is waiting to be released from * the holding pen - release it, then wait for it to flag * that it has been released by resetting pen_release. * * Note that "pen_release" is the hardware CPU ID, whereas * "cpu" is Linux's internal ID. */ write_pen_release(cpu); /* * Send the secondary CPU a soft interrupt, thereby causing * the boot monitor to read the system wide flags register, * and branch to the address found there. */ arch_send_wakeup_ipi_mask(cpumask_of(cpu));; timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { smp_rmb(); if (pen_release == -1) break; udelay(10); } /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); return pen_release != -1 ? -ENOSYS : 0; } /* * Initialise the CPU possible map early - this describes the CPUs * which may be present or become present in the system. */ static void __init cns3xxx_smp_init_cpus(void) { unsigned int i, ncores; unsigned int status; scu_base = (void __iomem *) CNS3XXX_TC11MP_SCU_BASE_VIRT; /* for CNS3xxx SCU_CPU_STATUS must be examined instead of SCU_CONFIGURATION * used in scu_get_core_count */ status = __raw_readl(scu_base + SCU_CPU_STATUS); for (i = 0; i < NR_CPUS+1; i++) { if (((status >> (i*2)) & 0x3) == 0) set_cpu_possible(i, true); else break; } ncores = i; } static void __init cns3xxx_smp_prepare_cpus(unsigned int max_cpus) { int i; /* * Initialise the present map, which describes the set of CPUs * actually populated at the present time. */ for (i = 0; i < max_cpus; i++) { set_cpu_present(i, true); } /* * enable SCU */ scu_enable(scu_base); /* * Write the address of secondary startup into the * system-wide flags register. The boot monitor waits * until it receives a soft interrupt, and then the * secondary CPU branches to this address. */ __raw_writel(virt_to_phys(cns3xxx_secondary_startup), (void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0600)); /* * Setup FIQ's for main cpu */ cns3xxx_init_fiq(); cns3xxx_set_fiq_regs(0); } extern void v6_dma_map_area(const void *, size_t, int); extern void v6_dma_unmap_area(const void *, size_t, int); extern void v6_dma_flush_range(const void *, const void *); extern void v6_flush_kern_dcache_area(void *, size_t); void fiq_dma_map_area(const void *addr, size_t size, int dir) { unsigned long flags; struct fiq_req *req; raw_local_irq_save(flags); /* currently, not possible to take cpu0 down, so only check cpu1 */ if (!cpu_online(1)) { raw_local_irq_restore(flags); v6_dma_map_area(addr, size, dir); return; } req = this_cpu_ptr(&fiq_data); req->map.addr = addr; req->map.size = size; req->flags = dir | CNS3XXX_MAP_AREA; smp_mb(); writel_relaxed(FIQ_GENERATE, req->reg); v6_dma_map_area(addr, size, dir); while (req->flags) barrier(); raw_local_irq_restore(flags); } void fiq_dma_unmap_area(const void *addr, size_t size, int dir) { unsigned long flags; struct fiq_req *req; raw_local_irq_save(flags); /* currently, not possible to take cpu0 down, so only check cpu1 */ if (!cpu_online(1)) { raw_local_irq_restore(flags); v6_dma_unmap_area(addr, size, dir); return; } req = this_cpu_ptr(&fiq_data); req->unmap.addr = addr; req->unmap.size = size; req->flags = dir | CNS3XXX_UNMAP_AREA; smp_mb(); writel_relaxed(FIQ_GENERATE, req->reg); v6_dma_unmap_area(addr, size, dir); while (req->flags) barrier(); raw_local_irq_restore(flags); } void fiq_dma_flush_range(const void *start, const void *end) { unsigned long flags; struct fiq_req *req; raw_local_irq_save(flags); /* currently, not possible to take cpu0 down, so only check cpu1 */ if (!cpu_online(1)) { raw_local_irq_restore(flags); v6_dma_flush_range(start, end); return; } req = this_cpu_ptr(&fiq_data); req->flush.start = start; req->flush.end = end; req->flags = CNS3XXX_FLUSH_RANGE; smp_mb(); writel_relaxed(FIQ_GENERATE, req->reg); v6_dma_flush_range(start, end); while (req->flags) barrier(); raw_local_irq_restore(flags); } void fiq_flush_kern_dcache_area(void *addr, size_t size) { fiq_dma_flush_range(addr, addr + size); } struct smp_operations cns3xxx_smp_ops __initdata = { .smp_init_cpus = cns3xxx_smp_init_cpus, .smp_prepare_cpus = cns3xxx_smp_prepare_cpus, .smp_secondary_init = cns3xxx_secondary_init, .smp_boot_secondary = cns3xxx_boot_secondary, };