openwrt/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_queue.c

814 lines
22 KiB
C

/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
* $Revision: #33 $
* $Date: 2008/07/15 $
* $Change: 1064918 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef DWC_DEVICE_ONLY
/**
* @file
*
* This file contains the functions to manage Queue Heads and Queue
* Transfer Descriptors.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/version.h>
#include "otg_driver.h"
#include "otg_hcd.h"
#include "otg_regs.h"
/**
* This function allocates and initializes a QH.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param[in] urb Holds the information about the device/endpoint that we need
* to initialize the QH.
*
* @return Returns pointer to the newly allocated QH, or NULL on error. */
dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
{
dwc_otg_qh_t *qh;
/* Allocate memory */
/** @todo add memflags argument */
qh = dwc_otg_hcd_qh_alloc ();
if (qh == NULL) {
return NULL;
}
dwc_otg_hcd_qh_init (hcd, qh, urb);
return qh;
}
/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
* removed from a list. QTD list should already be empty if called from URB
* Dequeue.
*
* @param[in] hcd HCD instance.
* @param[in] qh The QH to free.
*/
void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
dwc_otg_qtd_t *qtd;
struct list_head *pos;
//unsigned long flags;
/* Free each QTD in the QTD list */
#ifdef CONFIG_SMP
//the spinlock is locked before this function get called,
//but in case the lock is needed, the check function is preserved
//but in non-SMP mode, all spinlock is lockable.
//don't do the test in non-SMP mode
if(spin_trylock(&hcd->lock)) {
printk("%s: It is not supposed to be lockable!!\n",__func__);
BUG();
}
#endif
// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
for (pos = qh->qtd_list.next;
pos != &qh->qtd_list;
pos = qh->qtd_list.next)
{
list_del (pos);
qtd = dwc_list_to_qtd (pos);
dwc_otg_hcd_qtd_free (qtd);
}
// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
kfree (qh);
return;
}
/** Initializes a QH structure.
*
* @param[in] hcd The HCD state structure for the DWC OTG controller.
* @param[in] qh The QH to init.
* @param[in] urb Holds the information about the device/endpoint that we need
* to initialize the QH. */
#define SCHEDULE_SLOP 10
void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
{
char *speed, *type;
memset (qh, 0, sizeof (dwc_otg_qh_t));
/* Initialize QH */
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
break;
case PIPE_BULK:
qh->ep_type = USB_ENDPOINT_XFER_BULK;
break;
case PIPE_ISOCHRONOUS:
qh->ep_type = USB_ENDPOINT_XFER_ISOC;
break;
case PIPE_INTERRUPT:
qh->ep_type = USB_ENDPOINT_XFER_INT;
break;
}
qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
qh->data_toggle = DWC_OTG_HC_PID_DATA0;
qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
INIT_LIST_HEAD(&qh->qtd_list);
INIT_LIST_HEAD(&qh->qh_list_entry);
qh->channel = NULL;
qh->speed = urb->dev->speed;
/* FS/LS Enpoint on HS Hub
* NOT virtual root hub */
qh->do_split = 0;
if (((urb->dev->speed == USB_SPEED_LOW) ||
(urb->dev->speed == USB_SPEED_FULL)) &&
(urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
{
DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
urb->dev->ttport);
qh->do_split = 1;
}
if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
/* Compute scheduling parameters once and save them. */
hprt0_data_t hprt;
/** @todo Account for split transfers in the bus time. */
int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
usb_pipein(urb->pipe),
(qh->ep_type == USB_ENDPOINT_XFER_ISOC),
bytecount));
/* Start in a slightly future (micro)frame. */
qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
SCHEDULE_SLOP);
qh->interval = urb->interval;
#if 0
/* Increase interrupt polling rate for debugging. */
if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
qh->interval = 8;
}
#endif
hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
((urb->dev->speed == USB_SPEED_LOW) ||
(urb->dev->speed == USB_SPEED_FULL))) {
qh->interval *= 8;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
}
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
urb->dev->devnum);
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
qh->nak_frame = 0xffff;
switch(urb->dev->speed) {
case USB_SPEED_LOW:
speed = "low";
break;
case USB_SPEED_FULL:
speed = "full";
break;
case USB_SPEED_HIGH:
speed = "high";
break;
default:
speed = "?";
break;
}
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
switch (qh->ep_type) {
case USB_ENDPOINT_XFER_ISOC:
type = "isochronous";
break;
case USB_ENDPOINT_XFER_INT:
type = "interrupt";
break;
case USB_ENDPOINT_XFER_CONTROL:
type = "control";
break;
case USB_ENDPOINT_XFER_BULK:
type = "bulk";
break;
default:
type = "?";
break;
}
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
#ifdef DEBUG
if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
qh->usecs);
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
qh->interval);
}
#endif
return;
}
/**
* Microframe scheduler
* track the total use in hcd->frame_usecs
* keep each qh use in qh->frame_usecs
* when surrendering the qh then donate the time back
*/
static const u16 max_uframe_usecs[] = { 100, 100, 100, 100, 100, 100, 30, 0 };
/*
* called from dwc_otg_hcd.c:dwc_otg_hcd_init
*/
int init_hcd_usecs(dwc_otg_hcd_t *hcd)
{
int i;
for (i = 0; i < 8; i++)
hcd->frame_usecs[i] = max_uframe_usecs[i];
return 0;
}
static int find_single_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
int i;
u16 utime;
int t_left;
int ret;
int done;
ret = -1;
utime = qh->usecs;
t_left = utime;
i = 0;
done = 0;
while (done == 0) {
/* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
if (utime <= hcd->frame_usecs[i]) {
hcd->frame_usecs[i] -= utime;
qh->frame_usecs[i] += utime;
t_left -= utime;
ret = i;
done = 1;
return ret;
} else {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
}
}
return ret;
}
/*
* use this for FS apps that can span multiple uframes
*/
static int find_multi_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
int i;
int j;
u16 utime;
int t_left;
int ret;
int done;
u16 xtime;
ret = -1;
utime = qh->usecs;
t_left = utime;
i = 0;
done = 0;
loop:
while (done == 0) {
if (hcd->frame_usecs[i] <= 0) {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
goto loop;
}
/*
* We need n consequtive slots so use j as a start slot.
* j plus j+1 must be enough time (for now)
*/
xtime = hcd->frame_usecs[i];
for (j = i + 1; j < 8; j++) {
/*
* if we add this frame remaining time to xtime we may
* be OK, if not we need to test j for a complete frame.
*/
if ((xtime + hcd->frame_usecs[j]) < utime) {
if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
j = 8;
ret = -1;
continue;
}
}
if (xtime >= utime) {
ret = i;
j = 8; /* stop loop with a good value ret */
continue;
}
/* add the frame time to x time */
xtime += hcd->frame_usecs[j];
/* we must have a fully available next frame or break */
if ((xtime < utime) &&
(hcd->frame_usecs[j] == max_uframe_usecs[j])) {
ret = -1;
j = 8; /* stop loop with a bad value ret */
continue;
}
}
if (ret >= 0) {
t_left = utime;
for (j = i; (t_left > 0) && (j < 8); j++) {
t_left -= hcd->frame_usecs[j];
if (t_left <= 0) {
qh->frame_usecs[j] +=
hcd->frame_usecs[j] + t_left;
hcd->frame_usecs[j] = -t_left;
ret = i;
done = 1;
} else {
qh->frame_usecs[j] +=
hcd->frame_usecs[j];
hcd->frame_usecs[j] = 0;
}
}
} else {
i++;
if (i == 8) {
done = 1;
ret = -1;
}
}
}
return ret;
}
static int find_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
int ret = -1;
if (qh->speed == USB_SPEED_HIGH)
/* if this is a hs transaction we need a full frame */
ret = find_single_uframe(hcd, qh);
else
/* FS transaction may need a sequence of frames */
ret = find_multi_uframe(hcd, qh);
return ret;
}
/**
* Checks that the max transfer size allowed in a host channel is large enough
* to handle the maximum data transfer in a single (micro)frame for a periodic
* transfer.
*
* @param hcd The HCD state structure for the DWC OTG controller.
* @param qh QH for a periodic endpoint.
*
* @return 0 if successful, negative error code otherwise.
*/
static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
int status;
uint32_t max_xfer_size;
uint32_t max_channel_xfer_size;
status = 0;
max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
if (max_xfer_size > max_channel_xfer_size) {
DWC_NOTICE("%s: Periodic xfer length %d > "
"max xfer length for channel %d\n",
__func__, max_xfer_size, max_channel_xfer_size);
status = -ENOSPC;
}
return status;
}
/**
* Schedules an interrupt or isochronous transfer in the periodic schedule.
*/
static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
int status;
struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
int frame;
int num_channels;
num_channels = hcd->core_if->core_params->host_channels;
if ((hcd->periodic_channels < num_channels - 1)) {
if (hcd->periodic_channels + hcd->nakking_channels >= num_channels) {
/* All non-periodic channels are nakking? Halt
* one to make room (as long as there is at
* least one channel for non-periodic transfers,
* all the blocking non-periodics can time-share
* that one channel. */
dwc_hc_t *hc = dwc_otg_halt_nakking_channel(hcd);
if (hc)
DWC_DEBUGPL(DBG_HCD, "Out of Host Channels for periodic transfer - Halting channel %d (dev %d ep%d%s)\n", hc->hc_num, hc->dev_addr, hc->ep_num, (hc->ep_is_in ? "in" : "out"));
}
/* It could be that all channels are currently occupied,
* but in that case one will be freed up soon (either
* because it completed or because it was forced to halt
* above). */
}
status = find_uframe(hcd, qh);
frame = -1;
if (status == 0) {
frame = 7;
} else {
if (status > 0)
frame = status - 1;
}
/* Set the new frame up */
if (frame > -1) {
qh->sched_frame &= ~0x7;
qh->sched_frame |= (frame & 7);
}
if (status != -1)
status = 0;
if (status) {
pr_notice("%s: Insufficient periodic bandwidth for "
"periodic transfer.\n", __func__);
return status;
}
status = check_max_xfer_size(hcd, qh);
if (status) {
pr_notice("%s: Channel max transfer size too small "
"for periodic transfer.\n", __func__);
return status;
}
/* Always start in the inactive schedule. */
list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
hcd->periodic_channels++;
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs += qh->usecs;
/*
* Update average periodic bandwidth claimed and # periodic reqs for
* usbfs.
*/
bus->bandwidth_allocated += qh->usecs / qh->interval;
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
bus->bandwidth_int_reqs++;
else
bus->bandwidth_isoc_reqs++;
return status;
}
/**
* This function adds a QH to either the non periodic or periodic schedule if
* it is not already in the schedule. If the QH is already in the schedule, no
* action is taken.
*
* @return 0 if successful, negative error code otherwise.
*/
int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
//unsigned long flags;
int status = 0;
#ifdef CONFIG_SMP
//the spinlock is locked before this function get called,
//but in case the lock is needed, the check function is preserved
//but in non-SMP mode, all spinlock is lockable.
//don't do the test in non-SMP mode
if(spin_trylock(&hcd->lock)) {
printk("%s: It is not supposed to be lockable!!\n",__func__);
BUG();
}
#endif
// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
if (!list_empty(&qh->qh_list_entry)) {
/* QH already in a schedule. */
goto done;
}
/* Add the new QH to the appropriate schedule */
if (dwc_qh_is_non_per(qh)) {
/* Always start in the inactive schedule. */
list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
} else {
status = schedule_periodic(hcd, qh);
}
done:
// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
return status;
}
/**
* Removes an interrupt or isochronous transfer from the periodic schedule.
*/
static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
int i;
list_del_init(&qh->qh_list_entry);
hcd->periodic_channels--;
/* Update claimed usecs per (micro)frame. */
hcd->periodic_usecs -= qh->usecs;
for (i = 0; i < 8; i++) {
hcd->frame_usecs[i] += qh->frame_usecs[i];
qh->frame_usecs[i] = 0;
}
/*
* Update average periodic bandwidth claimed and # periodic reqs for
* usbfs.
*/
bus->bandwidth_allocated -= qh->usecs / qh->interval;
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
bus->bandwidth_int_reqs--;
else
bus->bandwidth_isoc_reqs--;
}
/**
* Removes a QH from either the non-periodic or periodic schedule. Memory is
* not freed.
*
* @param[in] hcd The HCD state structure.
* @param[in] qh QH to remove from schedule. */
void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
//unsigned long flags;
#ifdef CONFIG_SMP
//the spinlock is locked before this function get called,
//but in case the lock is needed, the check function is preserved
//but in non-SMP mode, all spinlock is lockable.
//don't do the test in non-SMP mode
if(spin_trylock(&hcd->lock)) {
printk("%s: It is not supposed to be lockable!!\n",__func__);
BUG();
}
#endif
// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
if (list_empty(&qh->qh_list_entry)) {
/* QH is not in a schedule. */
goto done;
}
if (dwc_qh_is_non_per(qh)) {
if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
}
list_del_init(&qh->qh_list_entry);
} else {
deschedule_periodic(hcd, qh);
}
done:
// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
return;
}
/**
* Deactivates a QH. For non-periodic QHs, removes the QH from the active
* non-periodic schedule. The QH is added to the inactive non-periodic
* schedule if any QTDs are still attached to the QH.
*
* For periodic QHs, the QH is removed from the periodic queued schedule. If
* there are any QTDs still attached to the QH, the QH is added to either the
* periodic inactive schedule or the periodic ready schedule and its next
* scheduled frame is calculated. The QH is placed in the ready schedule if
* the scheduled frame has been reached already. Otherwise it's placed in the
* inactive schedule. If there are no QTDs attached to the QH, the QH is
* completely removed from the periodic schedule.
*/
void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
{
if (dwc_qh_is_non_per(qh)) {
dwc_otg_hcd_qh_remove(hcd, qh);
if (!list_empty(&qh->qtd_list)) {
/* Add back to inactive non-periodic schedule. */
dwc_otg_hcd_qh_add(hcd, qh);
}
} else {
uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
if (qh->do_split) {
/* Schedule the next continuing periodic split transfer */
if (sched_next_periodic_split) {
qh->sched_frame = frame_number;
if (dwc_frame_num_le(frame_number,
dwc_frame_num_inc(qh->start_split_frame, 1))) {
/*
* Allow one frame to elapse after start
* split microframe before scheduling
* complete split, but DONT if we are
* doing the next start split in the
* same frame for an ISOC out.
*/
if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
}
}
} else {
qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
qh->interval);
if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
qh->sched_frame = frame_number;
}
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
} else {
qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
qh->sched_frame = frame_number;
}
}
if (list_empty(&qh->qtd_list)) {
dwc_otg_hcd_qh_remove(hcd, qh);
} else {
/*
* Remove from periodic_sched_queued and move to
* appropriate queue.
*/
if (qh->sched_frame == frame_number) {
list_move(&qh->qh_list_entry,
&hcd->periodic_sched_ready);
} else {
list_move(&qh->qh_list_entry,
&hcd->periodic_sched_inactive);
}
}
}
}
/**
* This function allocates and initializes a QTD.
*
* @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
* pointing to each other so each pair should have a unique correlation.
*
* @return Returns pointer to the newly allocated QTD, or NULL on error. */
dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
{
dwc_otg_qtd_t *qtd;
qtd = dwc_otg_hcd_qtd_alloc ();
if (qtd == NULL) {
return NULL;
}
dwc_otg_hcd_qtd_init (qtd, urb);
return qtd;
}
/**
* Initializes a QTD structure.
*
* @param[in] qtd The QTD to initialize.
* @param[in] urb The URB to use for initialization. */
void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
{
memset (qtd, 0, sizeof (dwc_otg_qtd_t));
qtd->urb = urb;
if (usb_pipecontrol(urb->pipe)) {
/*
* The only time the QTD data toggle is used is on the data
* phase of control transfers. This phase always starts with
* DATA1.
*/
qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
qtd->control_phase = DWC_OTG_CONTROL_SETUP;
}
/* start split */
qtd->complete_split = 0;
qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
qtd->isoc_split_offset = 0;
/* Store the qtd ptr in the urb to reference what QTD. */
urb->hcpriv = qtd;
return;
}
/**
* This function adds a QTD to the QTD-list of a QH. It will find the correct
* QH to place the QTD into. If it does not find a QH, then it will create a
* new QH. If the QH to which the QTD is added is not currently scheduled, it
* is placed into the proper schedule based on its EP type.
*
* @param[in] qtd The QTD to add
* @param[in] dwc_otg_hcd The DWC HCD structure
*
* @return 0 if successful, negative error code otherwise.
*/
int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
dwc_otg_hcd_t *dwc_otg_hcd)
{
struct usb_host_endpoint *ep;
dwc_otg_qh_t *qh;
int retval = 0;
struct urb *urb = qtd->urb;
/*
* Get the QH which holds the QTD-list to insert to. Create QH if it
* doesn't exist.
*/
usb_hcd_link_urb_to_ep(dwc_otg_hcd_to_hcd(dwc_otg_hcd), urb);
ep = dwc_urb_to_endpoint(urb);
qh = (dwc_otg_qh_t *)ep->hcpriv;
if (qh == NULL) {
qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
if (qh == NULL) {
usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(dwc_otg_hcd), urb);
retval = -ENOMEM;
goto done;
}
ep->hcpriv = qh;
}
retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
if (retval == 0) {
list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
} else {
usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(dwc_otg_hcd), urb);
}
done:
return retval;
}
#endif /* DWC_DEVICE_ONLY */