openwrt/target/linux/ramips/files/drivers/net/ethernet/ralink/ralink_soc_eth.c

1422 lines
33 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2009-2013 John Crispin <blogic@openwrt.org>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <asm/mach-ralink/ralink_regs.h>
#include "ralink_soc_eth.h"
#include "esw_rt3052.h"
#include "mdio.h"
#include "ralink_ethtool.h"
#define TX_TIMEOUT (2 * HZ)
#define MAX_RX_LENGTH 1536
#define FE_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
#define FE_RX_HLEN (FE_RX_OFFSET + VLAN_ETH_HLEN + VLAN_HLEN + \
ETH_FCS_LEN)
#define DMA_DUMMY_DESC 0xffffffff
#define FE_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
#define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
#define NEXT_TX_DESP_IDX(X) (((X) + 1) & (NUM_DMA_DESC - 1))
#define NEXT_RX_DESP_IDX(X) (((X) + 1) & (NUM_DMA_DESC - 1))
static int fe_msg_level = -1;
module_param_named(msg_level, fe_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
static const u32 fe_reg_table_default[FE_REG_COUNT] = {
[FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
[FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
[FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
[FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
[FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
[FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
[FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
[FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
[FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
[FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
[FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
[FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
[FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
[FE_REG_FE_RST_GL] = FE_FE_RST_GL,
};
static const u32 *fe_reg_table = fe_reg_table_default;
static void __iomem *fe_base = 0;
void fe_w32(u32 val, unsigned reg)
{
__raw_writel(val, fe_base + reg);
}
u32 fe_r32(unsigned reg)
{
return __raw_readl(fe_base + reg);
}
void fe_reg_w32(u32 val, enum fe_reg reg)
{
fe_w32(val, fe_reg_table[reg]);
}
u32 fe_reg_r32(enum fe_reg reg)
{
return fe_r32(fe_reg_table[reg]);
}
static inline void fe_int_disable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_int_enable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
{
unsigned long flags;
spin_lock_irqsave(&priv->page_lock, flags);
fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
FE_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&priv->page_lock, flags);
}
static int fe_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
if (!ret) {
struct fe_priv *priv = netdev_priv(dev);
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, p);
}
return ret;
}
static inline int fe_max_frag_size(int mtu)
{
return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int fe_max_buf_size(int frag_size)
{
return frag_size - FE_RX_HLEN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static void fe_clean_rx(struct fe_priv *priv)
{
int i;
if (priv->rx_data) {
for (i = 0; i < NUM_DMA_DESC; i++)
if (priv->rx_data[i]) {
if (priv->rx_dma && priv->rx_dma[i].rxd1)
dma_unmap_single(&priv->netdev->dev,
priv->rx_dma[i].rxd1,
priv->rx_buf_size,
DMA_FROM_DEVICE);
put_page(virt_to_head_page(priv->rx_data[i]));
}
kfree(priv->rx_data);
priv->rx_data = NULL;
}
if (priv->rx_dma) {
dma_free_coherent(&priv->netdev->dev,
NUM_DMA_DESC * sizeof(*priv->rx_dma),
priv->rx_dma,
priv->rx_phys);
priv->rx_dma = NULL;
}
}
static int fe_alloc_rx(struct fe_priv *priv)
{
struct net_device *netdev = priv->netdev;
int i;
priv->rx_data = kcalloc(NUM_DMA_DESC, sizeof(*priv->rx_data),
GFP_KERNEL);
if (!priv->rx_data)
goto no_rx_mem;
for (i = 0; i < NUM_DMA_DESC; i++) {
priv->rx_data[i] = netdev_alloc_frag(priv->frag_size);
if (!priv->rx_data[i])
goto no_rx_mem;
}
priv->rx_dma = dma_alloc_coherent(&netdev->dev,
NUM_DMA_DESC * sizeof(*priv->rx_dma),
&priv->rx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!priv->rx_dma)
goto no_rx_mem;
for (i = 0; i < NUM_DMA_DESC; i++) {
dma_addr_t dma_addr = dma_map_single(&netdev->dev,
priv->rx_data[i] + FE_RX_OFFSET,
priv->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
goto no_rx_mem;
priv->rx_dma[i].rxd1 = (unsigned int) dma_addr;
if (priv->soc->rx_dma)
priv->soc->rx_dma(priv, i, priv->rx_buf_size);
else
priv->rx_dma[i].rxd2 = RX_DMA_LSO;
}
wmb();
fe_reg_w32(priv->rx_phys, FE_REG_RX_BASE_PTR0);
fe_reg_w32(NUM_DMA_DESC, FE_REG_RX_MAX_CNT0);
fe_reg_w32((NUM_DMA_DESC - 1), FE_REG_RX_CALC_IDX0);
fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_rx_mem:
return -ENOMEM;
}
static void fe_clean_tx(struct fe_priv *priv)
{
int i;
if (priv->tx_skb) {
for (i = 0; i < NUM_DMA_DESC; i++) {
if (priv->tx_skb[i])
dev_kfree_skb_any(priv->tx_skb[i]);
}
kfree(priv->tx_skb);
priv->tx_skb = NULL;
}
if (priv->tx_dma) {
dma_free_coherent(&priv->netdev->dev,
NUM_DMA_DESC * sizeof(*priv->tx_dma),
priv->tx_dma,
priv->tx_phys);
priv->tx_dma = NULL;
}
}
static int fe_alloc_tx(struct fe_priv *priv)
{
int i;
priv->tx_free_idx = 0;
priv->tx_skb = kcalloc(NUM_DMA_DESC, sizeof(*priv->tx_skb),
GFP_KERNEL);
if (!priv->tx_skb)
goto no_tx_mem;
priv->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
NUM_DMA_DESC * sizeof(*priv->tx_dma),
&priv->tx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!priv->tx_dma)
goto no_tx_mem;
for (i = 0; i < NUM_DMA_DESC; i++) {
if (priv->soc->tx_dma) {
priv->soc->tx_dma(priv, i, NULL);
continue;
}
priv->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
}
wmb();
fe_reg_w32(priv->tx_phys, FE_REG_TX_BASE_PTR0);
fe_reg_w32(NUM_DMA_DESC, FE_REG_TX_MAX_CNT0);
fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int fe_init_dma(struct fe_priv *priv)
{
int err;
err = fe_alloc_tx(priv);
if (err)
return err;
err = fe_alloc_rx(priv);
if (err)
return err;
return 0;
}
static void fe_free_dma(struct fe_priv *priv)
{
fe_clean_tx(priv);
fe_clean_rx(priv);
netdev_reset_queue(priv->netdev);
}
static inline void txd_unmap_single(struct device *dev, struct fe_tx_dma *txd)
{
if (txd->txd1 && TX_DMA_GET_PLEN0(txd->txd2))
dma_unmap_single(dev, txd->txd1,
TX_DMA_GET_PLEN0(txd->txd2),
DMA_TO_DEVICE);
}
static inline void txd_unmap_page0(struct device *dev, struct fe_tx_dma *txd)
{
if (txd->txd1 && TX_DMA_GET_PLEN0(txd->txd2))
dma_unmap_page(dev, txd->txd1,
TX_DMA_GET_PLEN0(txd->txd2),
DMA_TO_DEVICE);
}
static inline void txd_unmap_page1(struct device *dev, struct fe_tx_dma *txd)
{
if (txd->txd3 && TX_DMA_GET_PLEN1(txd->txd2))
dma_unmap_page(dev, txd->txd3,
TX_DMA_GET_PLEN1(txd->txd2),
DMA_TO_DEVICE);
}
void fe_stats_update(struct fe_priv *priv)
{
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
u64_stats_update_begin(&hwstats->syncp);
if (IS_ENABLED(CONFIG_SOC_MT7621)) {
hwstats->rx_bytes += fe_r32(base);
hwstats->rx_packets += fe_r32(base + 0x08);
hwstats->rx_overflow += fe_r32(base + 0x10);
hwstats->rx_fcs_errors += fe_r32(base + 0x14);
hwstats->rx_short_errors += fe_r32(base + 0x18);
hwstats->rx_long_errors += fe_r32(base + 0x1c);
hwstats->rx_checksum_errors += fe_r32(base + 0x20);
hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
hwstats->tx_skip += fe_r32(base + 0x28);
hwstats->tx_collisions += fe_r32(base + 0x2c);
hwstats->tx_bytes += fe_r32(base + 0x30);
hwstats->tx_packets += fe_r32(base + 0x38);
} else {
hwstats->tx_bytes += fe_r32(base);
hwstats->tx_packets += fe_r32(base + 0x04);
hwstats->tx_skip += fe_r32(base + 0x08);
hwstats->tx_collisions += fe_r32(base + 0x0c);
hwstats->rx_bytes += fe_r32(base + 0x20);
hwstats->rx_packets += fe_r32(base + 0x24);
hwstats->rx_overflow += fe_r32(base + 0x28);
hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
hwstats->rx_short_errors += fe_r32(base + 0x30);
hwstats->rx_long_errors += fe_r32(base + 0x34);
hwstats->rx_checksum_errors += fe_r32(base + 0x38);
hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
}
u64_stats_update_end(&hwstats->syncp);
}
static struct rtnl_link_stats64 *fe_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
unsigned int start;
if (!base) {
netdev_stats_to_stats64(storage, &dev->stats);
return storage;
}
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hwstats->stats_lock)) {
fe_stats_update(priv);
spin_unlock(&hwstats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_bh(&hwstats->syncp);
storage->rx_packets = hwstats->rx_packets;
storage->tx_packets = hwstats->tx_packets;
storage->rx_bytes = hwstats->rx_bytes;
storage->tx_bytes = hwstats->tx_bytes;
storage->collisions = hwstats->tx_collisions;
storage->rx_length_errors = hwstats->rx_short_errors +
hwstats->rx_long_errors;
storage->rx_over_errors = hwstats->rx_overflow;
storage->rx_crc_errors = hwstats->rx_fcs_errors;
storage->rx_errors = hwstats->rx_checksum_errors;
storage->tx_aborted_errors = hwstats->tx_skip;
} while (u64_stats_fetch_retry_bh(&hwstats->syncp, start));
storage->tx_errors = priv->netdev->stats.tx_errors;
storage->rx_dropped = priv->netdev->stats.rx_dropped;
storage->tx_dropped = priv->netdev->stats.tx_dropped;
return storage;
}
static int fe_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
u32 vlan_cfg;
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features | NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
if (test_bit(idx, &priv->vlan_map)) {
netdev_warn(dev, "disable tx vlan offload\n");
dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
netdev_update_features(dev);
} else {
vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
if (idx & 0x1) {
vlan_cfg &= 0xffff;
vlan_cfg |= (vid << 16);
} else {
vlan_cfg &= 0xffff0000;
vlan_cfg |= vid;
}
fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
set_bit(idx, &priv->vlan_map);
}
return 0;
}
static int fe_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features | NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
clear_bit(idx, &priv->vlan_map);
return 0;
}
static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
int idx)
{
struct fe_priv *priv = netdev_priv(dev);
struct skb_frag_struct *frag;
struct fe_tx_dma *txd;
dma_addr_t mapped_addr;
unsigned int nr_frags;
u32 def_txd4, txd2;
int i, j, unmap_idx, tx_num;
txd = &priv->tx_dma[idx];
nr_frags = skb_shinfo(skb)->nr_frags;
tx_num = 1 + (nr_frags >> 1);
/* init tx descriptor */
if (priv->soc->tx_dma)
priv->soc->tx_dma(priv, idx, skb);
else
txd->txd4 = TX_DMA_DESP4_DEF;
def_txd4 = txd->txd4;
/* use dma_unmap_single to free it */
txd->txd4 |= priv->soc->tx_udf_bit;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd->txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (vlan_tx_tag_present(skb)) {
if (IS_ENABLED(CONFIG_SOC_MT7621))
txd->txd4 |= TX_DMA_INS_VLAN_MT7621 | vlan_tx_tag_get(skb);
else
txd->txd4 |= TX_DMA_INS_VLAN |
((vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT) << 4) |
(vlan_tx_tag_get(skb) & 0xF);
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(priv, tx_err, dev,
"GSO expand head fail.\n");
goto err_out;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
txd->txd4 |= TX_DMA_TSO;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_out;
txd->txd1 = mapped_addr;
txd2 = TX_DMA_PLEN0(skb_headlen(skb));
/* TX SG offload */
j = idx;
for (i = 0; i < nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
mapped_addr = skb_frag_dma_map(&dev->dev, frag, 0,
skb_frag_size(frag), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (i & 0x1) {
j = NEXT_TX_DESP_IDX(j);
txd = &priv->tx_dma[j];
txd->txd1 = mapped_addr;
txd2 = TX_DMA_PLEN0(frag->size);
txd->txd4 = def_txd4;
} else {
txd->txd3 = mapped_addr;
txd2 |= TX_DMA_PLEN1(frag->size);
if (i != (nr_frags -1))
txd->txd2 = txd2;
priv->tx_skb[j] = (struct sk_buff *) DMA_DUMMY_DESC;
}
}
/* set last segment */
if (nr_frags & 0x1)
txd->txd2 = (txd2 | TX_DMA_LS1);
else
txd->txd2 = (txd2 | TX_DMA_LS0);
/* store skb to cleanup */
priv->tx_skb[j] = skb;
wmb();
j = NEXT_TX_DESP_IDX(j);
fe_reg_w32(j, FE_REG_TX_CTX_IDX0);
return 0;
err_dma:
/* unmap dma */
txd = &priv->tx_dma[idx];
txd_unmap_single(&dev->dev, txd);
j = idx;
unmap_idx = i;
for (i = 0; i < unmap_idx; i++) {
if (i & 0x1) {
j = NEXT_TX_DESP_IDX(j);
txd = &priv->tx_dma[j];
txd_unmap_page0(&dev->dev, txd);
} else {
txd_unmap_page1(&dev->dev, txd);
}
}
err_out:
/* reinit descriptors and skb */
j = idx;
for (i = 0; i < tx_num; i++) {
priv->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
priv->tx_skb[j] = NULL;
j = NEXT_TX_DESP_IDX(j);
}
wmb();
return -1;
}
static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv) {
unsigned int len;
int ret;
ret = 0;
if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
if ((priv->flags & FE_FLAG_PADDING_64B) &&
!(priv->flags & FE_FLAG_PADDING_BUG))
return ret;
if (vlan_tx_tag_present(skb))
len = ETH_ZLEN;
else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
len = VLAN_ETH_ZLEN;
else if(!(priv->flags & FE_FLAG_PADDING_64B))
len = ETH_ZLEN;
else
return ret;
if (skb->len < len) {
if ((ret = skb_pad(skb, len - skb->len)) < 0)
return ret;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
}
return ret;
}
static inline u32 fe_empty_txd(struct fe_priv *priv, u32 tx_fill_idx)
{
return (u32)(NUM_DMA_DESC - ((tx_fill_idx - priv->tx_free_idx) &
(NUM_DMA_DESC - 1)));
}
static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
u32 tx;
int tx_num;
if (fe_skb_padto(skb, priv)) {
netif_warn(priv, tx_err, dev, "tx padding failed!\n");
return NETDEV_TX_OK;
}
spin_lock(&priv->page_lock);
tx_num = 1 + (skb_shinfo(skb)->nr_frags >> 1);
tx = fe_reg_r32(FE_REG_TX_CTX_IDX0);
if (unlikely(fe_empty_txd(priv, tx) <= tx_num))
{
netif_stop_queue(dev);
spin_unlock(&priv->page_lock);
netif_err(priv, tx_queued,dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
if (fe_tx_map_dma(skb, dev, tx) < 0) {
kfree_skb(skb);
stats->tx_dropped++;
} else {
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
stats->tx_packets++;
stats->tx_bytes += skb->len;
}
spin_unlock(&priv->page_lock);
return NETDEV_TX_OK;
}
static inline void fe_rx_vlan(struct sk_buff *skb)
{
struct ethhdr *ehdr;
u16 vlanid;
if (!__vlan_get_tag(skb, &vlanid)) {
/* pop the vlan tag */
ehdr = (struct ethhdr *)skb->data;
memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
}
}
static int fe_poll_rx(struct napi_struct *napi, int budget,
struct fe_priv *priv)
{
struct net_device *netdev = priv->netdev;
struct net_device_stats *stats = &netdev->stats;
struct fe_soc_data *soc = priv->soc;
u32 checksum_bit;
int idx = fe_reg_r32(FE_REG_RX_CALC_IDX0);
struct sk_buff *skb;
u8 *data, *new_data;
struct fe_rx_dma *rxd;
int done = 0;
bool rx_vlan = netdev->features & NETIF_F_HW_VLAN_CTAG_RX;
if (netdev->features & NETIF_F_RXCSUM)
checksum_bit = soc->checksum_bit;
else
checksum_bit = 0;
while (done < budget) {
unsigned int pktlen;
dma_addr_t dma_addr;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &priv->rx_dma[idx];
data = priv->rx_data[idx];
if (!(rxd->rxd2 & RX_DMA_DONE))
break;
/* alloc new buffer */
new_data = netdev_alloc_frag(priv->frag_size);
if (unlikely(!new_data)) {
stats->rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&netdev->dev,
new_data + FE_RX_OFFSET,
priv->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
put_page(virt_to_head_page(new_data));
goto release_desc;
}
/* receive data */
skb = build_skb(data, priv->frag_size);
if (unlikely(!skb)) {
put_page(virt_to_head_page(new_data));
goto release_desc;
}
skb_reserve(skb, FE_RX_OFFSET);
dma_unmap_single(&netdev->dev, rxd->rxd1,
priv->rx_buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_PLEN0(rxd->rxd2);
skb_put(skb, pktlen);
skb->dev = netdev;
if (rxd->rxd4 & checksum_bit) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
if (rx_vlan)
fe_rx_vlan(skb);
skb->protocol = eth_type_trans(skb, netdev);
stats->rx_packets++;
stats->rx_bytes += pktlen;
napi_gro_receive(napi, skb);
priv->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int) dma_addr;
release_desc:
if (soc->rx_dma)
soc->rx_dma(priv, idx, priv->rx_buf_size);
else
rxd->rxd2 = RX_DMA_LSO;
wmb();
fe_reg_w32(idx, FE_REG_RX_CALC_IDX0);
done++;
}
return done;
}
static int fe_poll_tx(struct fe_priv *priv, int budget)
{
struct net_device *netdev = priv->netdev;
struct device *dev = &netdev->dev;
unsigned int bytes_compl = 0;
struct sk_buff *skb;
struct fe_tx_dma *txd;
int done = 0, idx;
u32 udf_bit = priv->soc->tx_udf_bit;
idx = priv->tx_free_idx;
while (done < budget) {
txd = &priv->tx_dma[idx];
skb = priv->tx_skb[idx];
if (!(txd->txd2 & TX_DMA_DONE) || !skb)
break;
txd_unmap_page1(dev, txd);
if (txd->txd4 & udf_bit)
txd_unmap_single(dev, txd);
else
txd_unmap_page0(dev, txd);
if (skb != (struct sk_buff *) DMA_DUMMY_DESC) {
bytes_compl += skb->len;
dev_kfree_skb_any(skb);
done++;
}
priv->tx_skb[idx] = NULL;
idx = NEXT_TX_DESP_IDX(idx);
}
priv->tx_free_idx = idx;
if (!done)
return 0;
netdev_completed_queue(netdev, done, bytes_compl);
if (unlikely(netif_queue_stopped(netdev) &&
netif_carrier_ok(netdev))) {
netif_wake_queue(netdev);
}
return done;
}
static int fe_poll(struct napi_struct *napi, int budget)
{
struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
struct fe_hw_stats *hwstat = priv->hw_stats;
int tx_done, rx_done;
u32 status, mask;
u32 tx_intr, rx_intr;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
tx_intr = priv->soc->tx_dly_int;
rx_intr = priv->soc->rx_dly_int;
tx_done = rx_done = 0;
poll_again:
if (status & tx_intr) {
tx_done += fe_poll_tx(priv, budget - tx_done);
if (tx_done < budget) {
fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
}
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
}
if (status & rx_intr) {
rx_done += fe_poll_rx(napi, budget - rx_done, priv);
if (rx_done < budget) {
fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
}
}
if (unlikely(hwstat && (status & FE_CNT_GDM_AF))) {
if (spin_trylock(&hwstat->stats_lock)) {
fe_stats_update(priv);
spin_unlock(&hwstat->stats_lock);
}
fe_reg_w32(FE_CNT_GDM_AF, FE_REG_FE_INT_STATUS);
}
if (unlikely(netif_msg_intr(priv))) {
mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
netdev_info(priv->netdev,
"done tx %d, rx %d, intr 0x%x/0x%x\n",
tx_done, rx_done, status, mask);
}
if ((tx_done < budget) && (rx_done < budget)) {
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (status & (tx_intr | rx_intr )) {
goto poll_again;
}
napi_complete(napi);
fe_int_enable(tx_intr | rx_intr);
}
return rx_done;
}
static void fe_tx_timeout(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
priv->netdev->stats.tx_errors++;
netif_err(priv, tx_err, dev,
"transmit timed out, waking up the queue\n");
netif_info(priv, drv, dev, ": dma_cfg:%08x, free_idx:%d, " \
"dma_ctx_idx=%u, dma_crx_idx=%u\n",
fe_reg_r32(FE_REG_PDMA_GLO_CFG), priv->tx_free_idx,
fe_reg_r32(FE_REG_TX_CTX_IDX0),
fe_reg_r32(FE_REG_RX_CALC_IDX0));
netif_wake_queue(dev);
}
static irqreturn_t fe_handle_irq(int irq, void *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 status, dly_int;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
dly_int = (priv->soc->rx_dly_int | priv->soc->tx_dly_int);
if (likely(status & dly_int)) {
fe_int_disable(dly_int);
napi_schedule(&priv->rx_napi);
} else {
fe_reg_w32(status, FE_REG_FE_INT_STATUS);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void fe_poll_controller(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 dly_int = priv->soc->tx_dly_int | priv->soc->rx_dly_int;
fe_int_disable(dly_int);
fe_handle_irq(dev->irq, dev);
fe_int_enable(dly_int);
}
#endif
int fe_set_clock_cycle(struct fe_priv *priv)
{
unsigned long sysclk = priv->sysclk;
if (!sysclk) {
return -EINVAL;
}
sysclk /= FE_US_CYC_CNT_DIVISOR;
sysclk <<= FE_US_CYC_CNT_SHIFT;
fe_w32((fe_r32(FE_FE_GLO_CFG) &
~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
sysclk,
FE_FE_GLO_CFG);
return 0;
}
void fe_fwd_config(struct fe_priv *priv)
{
u32 fwd_cfg;
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
/* disable jumbo frame */
if (priv->flags & FE_FLAG_JUMBO_FRAME)
fwd_cfg &= ~FE_GDM1_JMB_EN;
/* set unicast/multicast/broadcast frame to cpu */
fwd_cfg &= ~0xffff;
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}
static void fe_rxcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
else
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
}
static void fe_txcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
else
fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
}
void fe_csum_config(struct fe_priv *priv)
{
struct net_device *dev = priv_netdev(priv);
fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
}
static int fe_hw_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
int i, err;
err = devm_request_irq(priv->device, dev->irq, fe_handle_irq, 0,
dev_name(priv->device), dev);
if (err)
return err;
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, dev->dev_addr);
fe_reg_w32(FE_DELAY_INIT, FE_REG_DLY_INT_CFG);
fe_int_disable(priv->soc->tx_dly_int | priv->soc->rx_dly_int);
/* frame engine will push VLAN tag regarding to VIDX feild in Tx desc. */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
for (i = 0; i < 16; i += 2)
fe_w32(((i + 1) << 16) + i,
fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
(i * 2));
BUG_ON(!priv->soc->fwd_config);
if (priv->soc->fwd_config(priv))
netdev_err(dev, "unable to get clock\n");
if (fe_reg_table[FE_REG_FE_RST_GL]) {
fe_reg_w32(1, FE_REG_FE_RST_GL);
fe_reg_w32(0, FE_REG_FE_RST_GL);
}
return 0;
}
static int fe_open(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
u32 val;
int err;
err = fe_init_dma(priv);
if (err)
goto err_out;
spin_lock_irqsave(&priv->page_lock, flags);
napi_enable(&priv->rx_napi);
val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
val |= priv->soc->pdma_glo_cfg;
fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
if (priv->phy)
priv->phy->start(priv);
if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
netif_carrier_on(dev);
netif_start_queue(dev);
fe_int_enable(priv->soc->tx_dly_int | priv->soc->rx_dly_int);
return 0;
err_out:
fe_free_dma(priv);
return err;
}
static int fe_stop(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
int i;
fe_int_disable(priv->soc->tx_dly_int | priv->soc->rx_dly_int);
netif_tx_disable(dev);
if (priv->phy)
priv->phy->stop(priv);
spin_lock_irqsave(&priv->page_lock, flags);
napi_disable(&priv->rx_napi);
fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
/* wait dma stop */
for (i = 0; i < 10; i++) {
if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
(FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
msleep(10);
continue;
}
break;
}
fe_free_dma(priv);
return 0;
}
static int __init fe_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct device_node *port;
int err;
BUG_ON(!priv->soc->reset_fe);
priv->soc->reset_fe();
if (priv->soc->switch_init)
priv->soc->switch_init(priv);
memcpy(dev->dev_addr, priv->soc->mac, ETH_ALEN);
of_get_mac_address_mtd(priv->device->of_node, dev->dev_addr);
err = fe_mdio_init(priv);
if (err)
return err;
if (priv->soc->port_init)
for_each_child_of_node(priv->device->of_node, port)
if (of_device_is_compatible(port, "ralink,eth-port") && of_device_is_available(port))
priv->soc->port_init(priv, port);
if (priv->phy) {
err = priv->phy->connect(priv);
if (err)
goto err_phy_disconnect;
}
err = fe_hw_init(dev);
if (err)
goto err_phy_disconnect;
if (priv->soc->switch_config)
priv->soc->switch_config(priv);
return 0;
err_phy_disconnect:
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
return err;
}
static void fe_uninit(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
free_irq(dev->irq, dev);
}
static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct fe_priv *priv = netdev_priv(dev);
if (!priv->phy_dev)
return -ENODEV;
switch (cmd) {
case SIOCETHTOOL:
return phy_ethtool_ioctl(priv->phy_dev,
(void *) ifr->ifr_data);
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static int fe_change_mtu(struct net_device *dev, int new_mtu)
{
struct fe_priv *priv = netdev_priv(dev);
int frag_size, old_mtu;
u32 fwd_cfg;
if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
return eth_change_mtu(dev, new_mtu);
frag_size = fe_max_frag_size(new_mtu);
if (new_mtu < 68 || frag_size > PAGE_SIZE)
return -EINVAL;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
return 0;
if (new_mtu <= ETH_DATA_LEN) {
priv->frag_size = fe_max_frag_size(ETH_DATA_LEN);
priv->rx_buf_size = fe_max_buf_size(ETH_DATA_LEN);
} else {
priv->frag_size = PAGE_SIZE;
priv->rx_buf_size = fe_max_buf_size(PAGE_SIZE);
}
if (!netif_running(dev))
return 0;
fe_stop(dev);
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
if (new_mtu <= ETH_DATA_LEN)
fwd_cfg &= ~FE_GDM1_JMB_EN;
else {
fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
}
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
return fe_open(dev);
}
static const struct net_device_ops fe_netdev_ops = {
.ndo_init = fe_init,
.ndo_uninit = fe_uninit,
.ndo_open = fe_open,
.ndo_stop = fe_stop,
.ndo_start_xmit = fe_start_xmit,
.ndo_set_mac_address = fe_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = fe_do_ioctl,
.ndo_change_mtu = fe_change_mtu,
.ndo_tx_timeout = fe_tx_timeout,
.ndo_get_stats64 = fe_get_stats64,
.ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fe_poll_controller,
#endif
};
static int fe_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
const struct of_device_id *match;
struct fe_soc_data *soc;
struct net_device *netdev;
struct fe_priv *priv;
struct clk *sysclk;
int err;
device_reset(&pdev->dev);
match = of_match_device(of_fe_match, &pdev->dev);
soc = (struct fe_soc_data *) match->data;
if (soc->reg_table)
fe_reg_table = soc->reg_table;
else
soc->reg_table = fe_reg_table;
fe_base = devm_request_and_ioremap(&pdev->dev, res);
if (!fe_base) {
err = -EADDRNOTAVAIL;
goto err_out;
}
netdev = alloc_etherdev(sizeof(*priv));
if (!netdev) {
dev_err(&pdev->dev, "alloc_etherdev failed\n");
err = -ENOMEM;
goto err_iounmap;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->netdev_ops = &fe_netdev_ops;
netdev->base_addr = (unsigned long) fe_base;
netdev->watchdog_timeo = TX_TIMEOUT;
netdev->irq = platform_get_irq(pdev, 0);
if (netdev->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
err = -ENXIO;
goto err_free_dev;
}
if (soc->init_data)
soc->init_data(soc, netdev);
/* fake NETIF_F_HW_VLAN_CTAG_RX for good GRO performance */
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
netdev->vlan_features = netdev->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
netdev->features |= netdev->hw_features;
/* fake rx vlan filter func. to support tx vlan offload func */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
priv = netdev_priv(netdev);
spin_lock_init(&priv->page_lock);
if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
if (!priv->hw_stats) {
err = -ENOMEM;
goto err_free_dev;
}
spin_lock_init(&priv->hw_stats->stats_lock);
}
sysclk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(sysclk))
priv->sysclk = clk_get_rate(sysclk);
priv->netdev = netdev;
priv->device = &pdev->dev;
priv->soc = soc;
priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
priv->frag_size = fe_max_frag_size(ETH_DATA_LEN);
priv->rx_buf_size = fe_max_buf_size(ETH_DATA_LEN);
if (priv->frag_size > PAGE_SIZE) {
dev_err(&pdev->dev, "error frag size.\n");
err = -EINVAL;
goto err_free_dev;
}
netif_napi_add(netdev, &priv->rx_napi, fe_poll, 32);
fe_set_ethtool_ops(netdev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "error bringing up device\n");
goto err_free_dev;
}
platform_set_drvdata(pdev, netdev);
netif_info(priv, probe, netdev, "ralink at 0x%08lx, irq %d\n",
netdev->base_addr, netdev->irq);
return 0;
err_free_dev:
free_netdev(netdev);
err_iounmap:
devm_iounmap(&pdev->dev, fe_base);
err_out:
return err;
}
static int fe_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct fe_priv *priv = netdev_priv(dev);
netif_napi_del(&priv->rx_napi);
if (priv->hw_stats)
kfree(priv->hw_stats);
unregister_netdev(dev);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver fe_driver = {
.probe = fe_probe,
.remove = fe_remove,
.driver = {
.name = "ralink_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_fe_match,
},
};
static int __init init_rtfe(void)
{
int ret;
ret = rtesw_init();
if (ret)
return ret;
ret = platform_driver_register(&fe_driver);
if (ret)
rtesw_exit();
return ret;
}
static void __exit exit_rtfe(void)
{
platform_driver_unregister(&fe_driver);
rtesw_exit();
}
module_init(init_rtfe);
module_exit(exit_rtfe);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
MODULE_VERSION(FE_DRV_VERSION);