[FIX] product,float_utils: perform ceiling via float_round with new rounding_method UP

Modified product ceiling() to use float_round() with special mode
for rounding UP (away from zero), avoiding pathological cases where
float representations errors were ceiling to the superior unit.

Also added correspding tests for rounding_method=UP

Fixes issue #1125, and replaces PR #1126.
This commit is contained in:
Cedric Snauwaert 2014-09-23 17:39:14 +02:00 committed by Olivier Dony
parent 1933e926ff
commit d4972ffdb6
3 changed files with 34 additions and 13 deletions

View File

@ -20,9 +20,6 @@
############################################################################## ##############################################################################
from openerp import tools from openerp import tools
import math
def rounding(f, r): def rounding(f, r):
# TODO for trunk: log deprecation warning # TODO for trunk: log deprecation warning
# _logger.warning("Deprecated rounding method, please use tools.float_round to round floats.") # _logger.warning("Deprecated rounding method, please use tools.float_round to round floats.")
@ -32,4 +29,4 @@ def rounding(f, r):
def ceiling(f, r): def ceiling(f, r):
if not r: if not r:
return f return f
return math.ceil(f / r) * r return tools.float_round(f, precision_rounding=r, rounding_method='UP')

View File

@ -198,8 +198,8 @@
- -
!python {model: res.currency}: | !python {model: res.currency}: |
from tools import float_compare, float_is_zero, float_round, float_repr from tools import float_compare, float_is_zero, float_round, float_repr
def try_round(amount, expected, precision_digits=3, float_round=float_round, float_repr=float_repr): def try_round(amount, expected, precision_digits=3, float_round=float_round, float_repr=float_repr, rounding_method='HALF-UP'):
result = float_repr(float_round(amount, precision_digits=precision_digits), result = float_repr(float_round(amount, precision_digits=precision_digits, rounding_method=rounding_method),
precision_digits=precision_digits) precision_digits=precision_digits)
assert result == expected, 'Rounding error: got %s, expected %s' % (result, expected) assert result == expected, 'Rounding error: got %s, expected %s' % (result, expected)
try_round(2.6745, '2.675') try_round(2.6745, '2.675')
@ -213,6 +213,15 @@
try_round(457.4554, '457.455') try_round(457.4554, '457.455')
try_round(-457.4554, '-457.455') try_round(-457.4554, '-457.455')
# Try some rounding value with rounding method UP instead of HALF-UP
# We use 8.175 because when normalizing 8.175 with precision_digits=3 it gives
# us 8175,0000000001234 as value, and if not handle correctly the rounding UP
# value will be incorrect (should be 8,175 and not 8,176)
try_round(8.175, '8.175', rounding_method='UP')
try_round(8.1751, '8.176', rounding_method='UP')
try_round(-8.175, '-8.175', rounding_method='UP')
try_round(-8.1751, '-8.175', rounding_method='UP')
# Extended float range test, inspired by Cloves Almeida's test on bug #882036. # Extended float range test, inspired by Cloves Almeida's test on bug #882036.
fractions = [.0, .015, .01499, .675, .67499, .4555, .4555, .45555] fractions = [.0, .015, .01499, .675, .67499, .4555, .4555, .45555]
expecteds = ['.00', '.02', '.01', '.68', '.67', '.46', '.456', '.4556'] expecteds = ['.00', '.02', '.01', '.68', '.67', '.46', '.456', '.4556']

View File

@ -29,10 +29,11 @@ def _float_check_precision(precision_digits=None, precision_rounding=None):
return 10 ** -precision_digits return 10 ** -precision_digits
return precision_rounding return precision_rounding
def float_round(value, precision_digits=None, precision_rounding=None): def float_round(value, precision_digits=None, precision_rounding=None, rounding_method='HALF-UP'):
"""Return ``value`` rounded to ``precision_digits`` """Return ``value`` rounded to ``precision_digits`` decimal digits,
decimal digits, minimizing IEEE-754 floating point representation minimizing IEEE-754 floating point representation errors, and applying
errors, and applying HALF-UP (away from zero) tie-breaking rule. the tie-breaking rule selected with ``rounding_method``, by default
HALF-UP (away from zero).
Precision must be given by ``precision_digits`` or ``precision_rounding``, Precision must be given by ``precision_digits`` or ``precision_rounding``,
not both! not both!
@ -41,6 +42,9 @@ def float_round(value, precision_digits=None, precision_rounding=None):
:param float precision_rounding: decimal number representing the minimum :param float precision_rounding: decimal number representing the minimum
non-zero value at the desired precision (for example, 0.01 for a non-zero value at the desired precision (for example, 0.01 for a
2-digit precision). 2-digit precision).
:param rounding_method: the rounding method used: 'HALF-UP' or 'UP', the first
one rounding up to the closest number with the rule that number>=0.5 is
rounded up to 1, and the latest one always rounding up.
:return: rounded float :return: rounded float
""" """
rounding_factor = _float_check_precision(precision_digits=precision_digits, rounding_factor = _float_check_precision(precision_digits=precision_digits,
@ -52,7 +56,7 @@ def float_round(value, precision_digits=None, precision_rounding=None):
# we normalize the value before rounding it as an integer, and de-normalize # we normalize the value before rounding it as an integer, and de-normalize
# after rounding: e.g. float_round(1.3, precision_rounding=.5) == 1.5 # after rounding: e.g. float_round(1.3, precision_rounding=.5) == 1.5
# TIE-BREAKING: HALF-UP # TIE-BREAKING: HALF-UP (for normal rounding)
# We want to apply HALF-UP tie-breaking rules, i.e. 0.5 rounds away from 0. # We want to apply HALF-UP tie-breaking rules, i.e. 0.5 rounds away from 0.
# Due to IEE754 float/double representation limits, the approximation of the # Due to IEE754 float/double representation limits, the approximation of the
# real value may be slightly below the tie limit, resulting in an error of # real value may be slightly below the tie limit, resulting in an error of
@ -66,8 +70,19 @@ def float_round(value, precision_digits=None, precision_rounding=None):
normalized_value = value / rounding_factor # normalize normalized_value = value / rounding_factor # normalize
epsilon_magnitude = math.log(abs(normalized_value), 2) epsilon_magnitude = math.log(abs(normalized_value), 2)
epsilon = 2**(epsilon_magnitude-53) epsilon = 2**(epsilon_magnitude-53)
normalized_value += cmp(normalized_value,0) * epsilon if rounding_method == 'HALF-UP':
rounded_value = round(normalized_value) # round to integer normalized_value += cmp(normalized_value,0) * epsilon
rounded_value = round(normalized_value) # round to integer
# TIE-BREAKING: UP (for ceiling operations)
# When rounding the value up, we instead subtract the epsilon value
# as the the approximation of the real value may be slightly *above* the
# tie limit, this would result in incorrectly rounding up to the next number
elif rounding_method == 'UP':
normalized_value -= cmp(normalized_value,0) * epsilon
rounded_value = math.ceil(normalized_value) # ceil to integer
result = rounded_value * rounding_factor # de-normalize result = rounded_value * rounding_factor # de-normalize
return result return result