9
0
Fork 0

eeprom: add at24 support

This driver to get read/write support to most I2C EEPROMs,
after you configure the driver to know about each EEPROM on
your target board.  Use these generic chip names, instead of
vendor-specific ones like at24c64 or 24lc02:

   24c00, 24c01, 24c02, spd (readonly 24c02), 24c04, 24c08,
   24c16, 24c32, 24c64, 24c128, 24c256, 24c512, 24c1024

Unless you like data loss puzzles, always be sure that any chip
you configure as a 24c32 (32 kbit) or larger is NOT really a
24c16 (16 kbit) or smaller, and vice versa. Marking the chip
as read-only won't help recover from this. Also, if your chip
has any software write-protect mechanism you may want to review the
code to make sure this driver won't turn it on by accident.

Based on linux 3.6

Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
This commit is contained in:
Jean-Christophe PLAGNIOL-VILLARD 2012-11-03 21:58:30 +01:00 committed by Sascha Hauer
parent eaa821788d
commit 7f8547648c
4 changed files with 515 additions and 0 deletions

View File

@ -8,4 +8,23 @@ config EEPROM_AT25
after you configure the board init code to know about each eeprom
on your target board.
config EEPROM_AT24
bool "at24 based eeprom"
depends on I2C
help
Enable this driver to get read/write support to most I2C EEPROMs,
after you configure the driver to know about each EEPROM on
your target board. Use these generic chip names, instead of
vendor-specific ones like at24c64 or 24lc02:
24c00, 24c01, 24c02, spd (readonly 24c02), 24c04, 24c08,
24c16, 24c32, 24c64, 24c128, 24c256, 24c512, 24c1024
Unless you like data loss puzzles, always be sure that any chip
you configure as a 24c32 (32 kbit) or larger is NOT really a
24c16 (16 kbit) or smaller, and vice versa. Marking the chip
as read-only won't help recover from this. Also, if your chip
has any software write-protect mechanism you may want to review the
code to make sure this driver won't turn it on by accident.
endmenu

View File

@ -1 +1,2 @@
obj-$(CONFIG_EEPROM_AT25) += at25.o
obj-$(CONFIG_EEPROM_AT24) += at24.o

460
drivers/eeprom/at24.c Normal file
View File

@ -0,0 +1,460 @@
/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <common.h>
#include <init.h>
#include <malloc.h>
#include <clock.h>
#include <driver.h>
#include <xfuncs.h>
#include <errno.h>
#include <linux/math64.h>
#include <linux/log2.h>
#include <i2c/i2c.h>
#include <i2c/at24.h>
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_data {
struct at24_platform_data chip;
struct cdev cdev;
struct file_operations fops;
u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us.
*/
struct i2c_client *client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned io_limit = 128;
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned write_timeout = 25;
#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8
#define AT24_BITMASK(x) (BIT(x) - 1)
/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) \
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
static struct platform_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
/* spd is a 24c02 in memory DIMMs */
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
/* 24rf08 quirk is handled at i2c-core */
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
/*-------------------------------------------------------------------------*/
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned *offset)
{
unsigned i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return at24->client[i];
}
static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
int status, i;
uint64_t start, read_time;
memset(msg, 0, sizeof(msg));
/*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
/*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
/*
* Reads fail if the previous write didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
start = get_time_ns();
do {
read_time = get_time_ns();
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
dev_dbg(&client->dev, "read %zu@%d --> %d (%llu)\n",
count, offset, status, read_time);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
mdelay(1);
} while (!is_timeout(start, write_timeout * MSECOND));
return -ETIMEDOUT;
}
static ssize_t at24_read(struct at24_data *at24,
char *buf, loff_t off, size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
while (count) {
ssize_t status;
status = at24_eeprom_read(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
return retval;
}
static ssize_t at24_cdev_read(struct cdev *cdev, void *buf, size_t count,
loff_t off, ulong flags)
{
struct at24_data *at24 = cdev->priv;
return at24_read(at24, buf, off, count);
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. This routine
* writes at most one page.
*/
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
unsigned offset, size_t count)
{
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status;
uint64_t start, write_time;
unsigned next_page;
int i = 0;
/* Get corresponding I2C address and adjust offset */
client = at24_translate_offset(at24, &offset);
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
/*
* Writes fail if the previous one didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
start = get_time_ns();
do {
write_time = get_time_ns();
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%llu)\n",
count, offset, status, write_time);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
mdelay(1);
} while (!is_timeout(start, write_timeout * MSECOND));
return -ETIMEDOUT;
}
static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
while (count) {
ssize_t status;
status = at24_eeprom_write(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
return retval;
}
static ssize_t at24_cdev_write(struct cdev *cdev, const void *buf, size_t count,
loff_t off, ulong flags)
{
struct at24_data *at24 = cdev->priv;
return at24_write(at24, buf, off, count);
}
static int at24_probe(struct device_d *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct at24_platform_data chip;
bool writable;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
if (dev->platform_data) {
chip = *(struct at24_platform_data *)dev->platform_data;
} else {
unsigned long magic;
err = dev_get_drvdata(dev, (unsigned long *)&magic);
if (err)
return err;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip.page_size = 1;
}
if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
err = -EINVAL;
goto err_out;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");
if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len,
(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
at24 = xzalloc(sizeof(struct at24_data) +
num_addresses * sizeof(struct i2c_client *));
at24->chip = chip;
at24->num_addresses = num_addresses;
at24->cdev.name = asprintf("eeprom%d", dev->id);
at24->cdev.priv = at24;
at24->cdev.dev = dev;
at24->cdev.ops = &at24->fops;
at24->fops.lseek = dev_lseek_default;
at24->fops.read = at24_cdev_read,
at24->cdev.size = chip.byte_len;
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
unsigned write_max = chip.page_size;
at24->fops.write = at24_cdev_write;
if (write_max > io_limit)
write_max = io_limit;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = xmalloc(write_max + 2);
}
at24->client[0] = client;
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}
devfs_create(&at24->cdev);
return 0;
err_clients:
kfree(at24->writebuf);
kfree(at24);
err_out:
dev_dbg(&client->dev, "probe error %d\n", err);
return err;
}
static struct driver_d at24_driver = {
.name = "at24",
.probe = at24_probe,
.id_table = at24_ids,
};
static int at24_init(void)
{
i2c_register_driver(&at24_driver);
return 0;
}
device_initcall(at24_init);

35
include/i2c/at24.h Normal file
View File

@ -0,0 +1,35 @@
/*
* at24.h - platform_data for the at24 (generic eeprom) driver
* (C) Copyright 2008 by Pengutronix
* (C) Copyright 2012 by Wolfram Sang
* same license as the driver
*/
#ifndef _LINUX_AT24_H
#define _LINUX_AT24_H
#include <linux/types.h>
/**
* struct at24_platform_data - data to set up at24 (generic eeprom) driver
* @byte_len: size of eeprom in byte
* @page_size: number of byte which can be written in one go
* @flags: tunable options, check AT24_FLAG_* defines
*
* If you set up a custom eeprom type, please double-check the parameters.
* Especially page_size needs extra care, as you risk data loss if your value
* is bigger than what the chip actually supports!
*
*/
struct at24_platform_data {
u32 byte_len; /* size (sum of all addr) */
u16 page_size; /* for writes */
u8 flags;
#define AT24_FLAG_ADDR16 0x80 /* address pointer is 16 bit */
#define AT24_FLAG_READONLY 0x40 /* sysfs-entry will be read-only */
#define AT24_FLAG_IRUGO 0x20 /* sysfs-entry will be world-readable */
#define AT24_FLAG_TAKE8ADDR 0x10 /* take always 8 addresses (24c00) */
};
#endif /* _LINUX_AT24_H */