9
0
Fork 0

ppc: mpc8xxx: add DDR3 support

Add DDR3 support into the MPC8xxx DDR driver.

To avoid confusion, the function set_ddr_sdram_mode is renamed
set_ddr2_sdram_mode.

Checking for errors is simplified in the DDR2 DIMM parameters
computation to be consistent with DDR3.

This code is derived from the files found in directory drivers/ddr/fsl
from U-Boot version git-be937b5.

Signed-off-by: Renaud Barbier <renaud.barbier@ge.com>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
This commit is contained in:
Renaud Barbier 2014-03-13 18:10:00 +00:00 committed by Sascha Hauer
parent 64e38721cd
commit cbeded2bad
12 changed files with 811 additions and 100 deletions

View File

@ -1,2 +1,4 @@
obj-y += main.o util.o ctrl_regs.o options.o lc_common_dimm_params.o
obj-$(CONFIG_FSL_DDR2) += ddr2_dimm_params.o ddr2_setctrl.o
obj-y += ddr_setctrl.o
obj-$(CONFIG_FSL_DDR2) += ddr2_dimm_params.o
obj-$(CONFIG_FSL_DDR3) += ddr3_dimm_params.o

View File

@ -23,6 +23,7 @@ struct common_timing_params_s {
uint32_t tRRD_ps; /* maximum = 63750 ps */
uint32_t tRC_ps; /* maximum = 254 ns + .75 ns = 254750 ps */
uint32_t refresh_rate_ps;
uint32_t extended_op_srt;
uint32_t tIS_ps; /* byte 32, spd->ca_setup */
uint32_t tIH_ps; /* byte 33, spd->ca_hold */
uint32_t tDS_ps; /* byte 34, spd->data_setup */
@ -36,6 +37,7 @@ struct common_timing_params_s {
uint32_t additive_latency;
uint32_t all_DIMMs_burst_lengths_bitmask;
uint32_t all_DIMMs_registered;
uint32_t all_DIMMs_unbuffered;
uint32_t all_DIMMs_ECC_capable;
uint64_t total_mem;
uint64_t base_address;

View File

@ -8,7 +8,7 @@
*/
/*
* Generic driver for Freescale DDR2 memory controller.
* Generic driver for Freescale DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
@ -17,6 +17,33 @@
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
static uint32_t compute_cas_write_latency(void)
{
uint32_t cwl;
const uint32_t mclk_ps = get_memory_clk_period_ps();
if (mclk_ps >= 2500)
cwl = 5;
else if (mclk_ps >= 1875)
cwl = 6;
else if (mclk_ps >= 1500)
cwl = 7;
else if (mclk_ps >= 1250)
cwl = 8;
else if (mclk_ps >= 1070)
cwl = 9;
else if (mclk_ps >= 935)
cwl = 10;
else if (mclk_ps >= 833)
cwl = 11;
else if (mclk_ps >= 750)
cwl = 12;
else
cwl = 12;
return cwl;
}
static void set_csn_config(int dimm_number, int i,
struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
@ -81,40 +108,91 @@ static void set_csn_config(int dimm_number, int i,
}
static void set_timing_cfg_0(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts)
const struct memctl_options_s *popts,
const struct dimm_params_s *dimm)
{
uint32_t trwt_mclk = 0;
uint32_t trwt_mclk = 0, twrt_mclk = 0, act_pd_exit_mclk,
pre_pd_exit_mclk, taxpd_mclk, tmrd_mclk, txp,
data_rate = fsl_get_ddr_freq(0);
if (popts->trwt_override)
trwt_mclk = popts->trwt;
if (popts->sdram_type == SDRAM_TYPE_DDR2) {
act_pd_exit_mclk = popts->txard;
pre_pd_exit_mclk = popts->txp;
taxpd_mclk = popts->taxpd;
tmrd_mclk = popts->tmrd;
} else {
/*
* tXARD is not part of the DDR3 specification, use the
* parameter txp instead of it. That is:
* txp=max(3nCK, 7.5ns). As well, use tAXPD=1.
*/
txp = max_t(uint32_t, (get_memory_clk_period_ps() * 3), 7500);
data_rate = fsl_get_ddr_freq(0);
tmrd_mclk = 4;
/* for faster clock, need more time for data setup */
if (popts->trwt_override)
trwt_mclk = popts->trwt;
else if (data_rate / 1000000 > 1800)
trwt_mclk = 2;
else
trwt_mclk = 0;
if (data_rate / 1000000 > 1150)
twrt_mclk = 1;
else
twrt_mclk = 0;
taxpd_mclk = 1;
if (popts->dynamic_power == 0) {
act_pd_exit_mclk = 1;
pre_pd_exit_mclk = 1;
} else {
/* act_pd_exit_mclk = tXARD, see above */
act_pd_exit_mclk = picos_to_mclk(txp);
/* Mode register MR0[A12] is '1' - fast exit */
pre_pd_exit_mclk = act_pd_exit_mclk;
}
}
ddr->timing_cfg_0 = (((trwt_mclk & 0x3) << 30)
| ((popts->txard & 0x7) << 20)
| ((popts->txp & 0xF) << 16)
| ((popts->taxpd & 0xf) << 8)
| ((popts->tmrd & 0xf) << 0));
| ((twrt_mclk & 0x3) << 28)
| ((act_pd_exit_mclk & 0xf) << 20)
| ((pre_pd_exit_mclk & 0xf) << 16)
| ((taxpd_mclk & 0xf) << 8)
| ((tmrd_mclk & 0x1f) << 0)
);
}
static void set_timing_cfg_3(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm,
uint32_t cas_latency)
uint32_t cas_latency, uint32_t additive_latency)
{
uint32_t ext_pretoact, ext_acttopre, ext_acttorw, ext_refrec;
uint32_t ext_pretoact, ext_acttopre, ext_acttorw, ext_refrec, ext_wrrec;
ext_pretoact = picos_to_mclk(dimm->tRP_ps) >> 4;
ext_acttopre = picos_to_mclk(dimm->tRAS_ps) >> 4;
ext_acttorw = picos_to_mclk(dimm->tRCD_ps) >> 4;
cas_latency = ((cas_latency << 1) - 1) >> 4;
additive_latency = additive_latency >> 4;
ext_refrec = (picos_to_mclk(dimm->tRFC_ps) - 8) >> 4;
/* ext_wrrec only deals with 16 clock and above, or 14 with OTF */
ext_wrrec = (picos_to_mclk(dimm->tWR_ps) +
(popts->otf_burst_chop_en ? 2 : 0)) >> 4;
ddr->timing_cfg_3 = (((ext_pretoact & 0x1) << 28)
| ((ext_acttopre & 0x2) << 24)
| ((ext_acttopre & 0x3) << 24)
| ((ext_acttorw & 0x1) << 22)
| ((ext_refrec & 0x1F) << 16)
| ((cas_latency & 0x3) << 12));
| ((cas_latency & 0x3) << 12)
| ((additive_latency & 0x1) << 10)
| ((ext_wrrec & 0x1) << 8)
);
}
static void set_timing_cfg_1(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm,
uint32_t cas_latency)
{
@ -152,10 +230,19 @@ static void set_timing_cfg_1(struct fsl_ddr_cfg_regs_s *ddr,
wrrec_mclk = picos_to_mclk(dimm->tWR_ps);
if (wrrec_mclk <= 16)
wrrec_mclk = wrrec_table[wrrec_mclk - 1];
if (popts->otf_burst_chop_en)
wrrec_mclk += 2;
wrtord_mclk = picos_to_mclk(dimm->tWTR_ps);
if (wrtord_mclk < 2)
wrtord_mclk = 2;
if (popts->sdram_type == SDRAM_TYPE_DDR2) {
wrtord_mclk = max_t(uint32_t, wrtord_mclk, 2);
} else {
wrtord_mclk = max_t(uint32_t, wrtord_mclk, 4);
acttoact_mclk = max_t(uint32_t, acttoact_mclk, 4);
}
if (popts->otf_burst_chop_en)
wrtord_mclk += 2;
ddr->timing_cfg_1 = (((pretoact_mclk & 0x0F) << 28)
| ((acttopre_mclk & 0x0F) << 24)
@ -176,11 +263,16 @@ static void set_timing_cfg_2(struct fsl_ddr_cfg_regs_s *ddr,
cpo = popts->cpo_override;
rd_to_pre = picos_to_mclk(dimm->tRTP_ps);
if (rd_to_pre < 2)
rd_to_pre = 2;
if (popts->sdram_type == SDRAM_TYPE_DDR2) {
cas_latency = cas_latency - 1;
rd_to_pre = max_t(uint32_t, rd_to_pre, 2);
} else {
cas_latency = compute_cas_write_latency();
rd_to_pre = max_t(uint32_t, rd_to_pre, 4);
}
if (additive_latency)
rd_to_pre += additive_latency;
if (popts->otf_burst_chop_en)
rd_to_pre += 2;
wr_data_delay = popts->write_data_delay;
cke_pls = picos_to_mclk(popts->tCKE_clock_pulse_width_ps);
@ -188,7 +280,7 @@ static void set_timing_cfg_2(struct fsl_ddr_cfg_regs_s *ddr,
ddr->timing_cfg_2 = (((additive_latency & 0xf) << 28)
| ((cpo & 0x1f) << 23)
| (((cas_latency - 1) & 0xf) << 19)
| ((cas_latency & 0xf) << 19)
| ((rd_to_pre & 7) << 13)
| ((wr_data_delay & 7) << 10)
| ((cke_pls & 0x7) << 6)
@ -199,7 +291,8 @@ static void set_ddr_sdram_cfg(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm)
{
uint32_t mem_en, sren, ecc_en, sdram_type, dyn_pwr, dbw, twoT_en, hse;
uint32_t mem_en, sren, ecc_en, sdram_type, dyn_pwr, dbw, twoT_en, hse,
threet_en, eight_be = 0;
mem_en = 1;
sren = popts->self_refresh_in_sleep;
@ -208,15 +301,16 @@ static void set_ddr_sdram_cfg(struct fsl_ddr_cfg_regs_s *ddr,
else
ecc_en = 0;
if (popts->sdram_type)
sdram_type = popts->sdram_type;
else
sdram_type = FSL_SDRAM_TYPE;
sdram_type = popts->sdram_type;
twoT_en = popts->twoT_en;
dyn_pwr = popts->dynamic_power;
dbw = popts->data_bus_width;
hse = popts->half_strength_driver_enable;
threet_en = popts->threet_en;
if (sdram_type == SDRAM_TYPE_DDR3)
if ((popts->burst_length == DDR_BL8) || (dbw == 1))
eight_be = 1;
ddr->ddr_sdram_cfg = (((mem_en & 0x1) << 31)
| ((sren & 0x1) << 30)
@ -224,6 +318,8 @@ static void set_ddr_sdram_cfg(struct fsl_ddr_cfg_regs_s *ddr,
| ((sdram_type & 0x7) << 24)
| ((dyn_pwr & 0x1) << 21)
| ((dbw & 0x3) << 19)
| ((eight_be & 0x1) << 18)
| ((threet_en & 0x1) << 16)
| ((twoT_en & 0x1) << 15)
| ((hse & 0x1) << 3));
}
@ -232,7 +328,8 @@ static void set_ddr_sdram_cfg_2(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts)
{
struct ddr_board_info_s *bi = popts->board_info;
uint32_t i, dll_rst_dis, dqs_cfg, odt_cfg = 0, num_pr, d_init = 0;
uint32_t i, dll_rst_dis, dqs_cfg, odt_cfg = 0, num_pr, d_init = 0,
obc_cfg = 0, x4_en, md_en = 0, rcw_en = 0;
dll_rst_dis = popts->dll_rst_dis;
dqs_cfg = popts->DQS_config;
@ -256,11 +353,48 @@ static void set_ddr_sdram_cfg_2(struct fsl_ddr_cfg_regs_s *ddr,
ddr->ddr_data_init = popts->data_init;
}
if (popts->sdram_type == SDRAM_TYPE_DDR3) {
obc_cfg = popts->otf_burst_chop_en;
md_en = popts->mirrored_dimm;
}
x4_en = popts->x4_en ? 1 : 0;
ddr->ddr_sdram_cfg_2 = (((dll_rst_dis & 0x1) << 29)
| ((dqs_cfg & 0x3) << 26)
| ((odt_cfg & 0x3) << 21)
| ((num_pr & 0xf) << 12)
| ((d_init & 0x1) << 4));
| (x4_en << 10)
| ((obc_cfg & 0x1) << 6)
| ((d_init & 0x1) << 4)
| ((rcw_en & 0x1) << 2)
| ((md_en & 0x1) << 0)
);
}
static void set_ddr_sdram_mode_2(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm)
{
uint16_t esdmode2;
uint32_t rtt_wr, srt = 0, cwl;
cwl = compute_cas_write_latency() - 5;
if (popts->rtt_override)
rtt_wr = popts->rtt_wr_override_value;
else
rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;
if (dimm->extended_op_srt)
srt = dimm->extended_op_srt;
esdmode2 = (((rtt_wr & 0x3) << 9)
| ((srt & 0x1) << 7)
| ((cwl & 0x7) << 3)
);
ddr->ddr_sdram_mode_2 = (esdmode2 & 0xffff) << 16;
}
static void
@ -277,12 +411,107 @@ set_ddr_sdram_interval(struct fsl_ddr_cfg_regs_s *ddr,
ddr->ddr_sdram_interval = (((refint & 0xFFFF) << 16)
| ((bstopre & 0x3FFF) << 0));
}
static void set_ddr_sdram_mode(struct fsl_ddr_cfg_regs_s *ddr,
void set_ddr3_sdram_mode(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm,
uint32_t cas_latency,
uint32_t additive_latency)
uint32_t cas_latency, uint32_t additive_latency)
{
uint16_t esdmode, sdmode;
/* Mode Register - MR1 */
uint32_t rtt, al;
/* Mode Register - MR0 */
uint32_t dll_on, wr = 0, dll_rst, mode, caslat = 4, bt, bl, wr_mclk;
/*
* DDR_SDRAM_MODE doesn't support 9,11,13,15
* Please refer JEDEC Standard No. 79-3E for Mode Register MR0
* for this table
*/
static const u8 wr_table[] = {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
uint8_t cas_latency_table[] = { /* From 5 to 16 clocks */
0x2, 0x4, 0x6, 0x8, 0xa, 0xc, 0xe, 0x1, 0x3, 0x5, 0x7, 0x9,
};
const unsigned int mclk_ps = get_memory_clk_period_ps();
if (popts->rtt_override)
rtt = popts->rtt_override_value;
else
rtt = popts->cs_local_opts[0].odt_rtt_norm;
if (additive_latency == (cas_latency - 1))
al = 1;
else if (additive_latency == (cas_latency - 2))
al = 2;
else
al = 0;
/*
* The esdmode value will also be used for writing
* MR1 during write leveling for DDR3, although the
* bits specifically related to the write leveling
* scheme will be handled automatically by the DDR
* controller. So wrlvl_en is set to 0 here.
*/
esdmode = (((rtt & 0x4) << 7)
| ((rtt & 0x2) << 5)
| ((al & 0x3) << 3)
| ((rtt & 0x1) << 2)
);
/*
* DLL control for precharge PD
* 0=slow exit DLL off (tXPDLL)
* 1=fast exit DLL on (tXP)
*/
dll_on = 1;
wr_mclk = (dimm->tWR_ps + mclk_ps - 1) / mclk_ps;
if (wr_mclk <= 16)
wr = wr_table[wr_mclk - 5];
dll_rst = 0; /* dll no reset */
mode = 0; /* normal mode */
/* look up table to get the cas latency bits */
if (cas_latency >= 5 && cas_latency <= 16)
caslat = cas_latency_table[cas_latency - 5];
/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
bt = 0;
switch (popts->burst_length) {
case DDR_BL8:
bl = 0;
break;
case DDR_OTF:
bl = 1;
break;
case DDR_BC4:
bl = 2;
break;
default:
bl = 1;
break;
}
sdmode = (((dll_on & 0x1) << 12)
| ((wr & 0x7) << 9)
| ((dll_rst & 0x1) << 8)
| ((mode & 0x1) << 7)
| (((caslat >> 1) & 0x7) << 4)
| ((bt & 0x1) << 3)
| ((caslat & 1) << 2)
| ((bl & 0x3) << 0)
);
ddr->ddr_sdram_mode = (((esdmode & 0xffff) << 16)
| ((sdmode & 0xffff) << 0)
);
}
void set_ddr2_sdram_mode(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm,
uint32_t cas_latency, uint32_t additive_latency)
{
uint16_t esdmode, sdmode;
uint32_t dqs_en, rtt, al, wr, bl;
@ -342,6 +571,19 @@ static void set_ddr_sdram_mode(struct fsl_ddr_cfg_regs_s *ddr,
| ((sdmode & 0xFFFF) << 0));
}
void set_ddrx_sdram_mode(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
const struct common_timing_params_s *dimm,
uint32_t cas_latency, uint32_t additive_latency)
{
if (popts->sdram_type == SDRAM_TYPE_DDR2)
set_ddr2_sdram_mode(ddr, popts, dimm, cas_latency,
additive_latency);
else
set_ddr3_sdram_mode(ddr, popts, dimm, cas_latency,
additive_latency);
}
uint32_t check_fsl_memctl_config_regs(const struct fsl_ddr_cfg_regs_s *ddr)
{
/*
@ -355,6 +597,98 @@ uint32_t check_fsl_memctl_config_regs(const struct fsl_ddr_cfg_regs_s *ddr)
return 0;
}
static void set_timing_cfg_4(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts)
{
uint32_t rrt = 0, wwt = 0, dll_lock = 1;
if (popts->burst_length != DDR_BL8)
rrt = wwt = 2;
ddr->timing_cfg_4 = (((rrt & 0xf) << 20)
| ((wwt & 0xf) << 16)
| (dll_lock & 0x3)
);
}
static void set_timing_cfg_5(struct fsl_ddr_cfg_regs_s *ddr,
const struct memctl_options_s *popts,
uint32_t cas_latency)
{
uint32_t rodt_on, rodt_off = 4, wodt_on = 1, wodt_off = 4;
/* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
rodt_on = cas_latency - ((ddr->timing_cfg_2 & 0x00780000) >> 19) + 1;
ddr->timing_cfg_5 = (((rodt_on & 0x1f) << 24)
| ((rodt_off & 0x7) << 20)
| ((wodt_on & 0x1f) << 12)
| ((wodt_off & 0x7) << 8)
);
}
static void set_ddr_zq_cntl(struct fsl_ddr_cfg_regs_s *ddr, uint32_t zq_en)
{
uint32_t zqinit = 0, zqoper = 0, zqcs = 0;
if (zq_en) {
zqinit = 9;
zqoper = 8;
zqcs = 6;
}
ddr->ddr_zq_cntl = (((zq_en & 0x1) << 31)
| ((zqinit & 0xf) << 24)
| ((zqoper & 0xf) << 16)
| ((zqcs & 0xf) << 8)
);
}
static void set_ddr_wrlvl_cntl(struct fsl_ddr_cfg_regs_s *ddr,
uint32_t wrlvl_en, const struct memctl_options_s *popts)
{
uint32_t wrlvl_mrd = 0, wrlvl_odten = 0, wrlvl_dqsen = 0,
wrlvl_wlr = 0, wrlvl_start = 0, wrlvl_smpl = 0;
/* Enable write leveling for DDR3 due to fly-by topology */
if (wrlvl_en) {
wrlvl_mrd = 0x6;
wrlvl_odten = 0x7;
wrlvl_dqsen = 0x5;
/*
* Write leveling sample time at least need 6 clocks
* higher than tWLO to allow enough time for progagation
* delay and sampling the prime data bits.
*/
wrlvl_smpl = 0xf;
/*
* Write leveling repetition time. At least tWLO + 6 clocks
* Set it to 64
*/
wrlvl_wlr = 0x6;
/*
* Write leveling start time
* The value use for the DQS_ADJUST for the first sample
* when write leveling is enabled. It probably needs to be
* overriden per platform.
*/
wrlvl_start = 0x8;
if (popts->wrlvl_override) {
wrlvl_smpl = popts->wrlvl_sample;
wrlvl_start = popts->wrlvl_start;
}
}
ddr->ddr_wrlvl_cntl = (((wrlvl_en & 0x1) << 31)
| ((wrlvl_mrd & 0x7) << 24)
| ((wrlvl_odten & 0x7) << 20)
| ((wrlvl_dqsen & 0x7) << 16)
| ((wrlvl_smpl & 0xf) << 12)
| ((wrlvl_wlr & 0x7) << 8)
| ((wrlvl_start & 0x1f) << 0)
);
}
uint32_t
compute_fsl_memctl_config_regs(const struct memctl_options_s *popts,
struct fsl_ddr_cfg_regs_s *ddr,
@ -364,7 +698,7 @@ compute_fsl_memctl_config_regs(const struct memctl_options_s *popts,
{
struct ddr_board_info_s *binfo = popts->board_info;
uint32_t cas_latency, additive_latency, i, cs_per_dimm,
dimm_number;
dimm_number, zq_en, wrlvl_en, sr_it = 0;
uint64_t ea, sa, rank_density;
if (dimm == NULL)
@ -383,6 +717,9 @@ compute_fsl_memctl_config_regs(const struct memctl_options_s *popts,
else
additive_latency = dimm->additive_latency;
if (popts->auto_self_refresh_en)
sr_it = popts->sr_it;
/* Chip Select Memory Bounds (CSn_BNDS) */
for (i = 0; i < binfo->cs_per_ctrl; i++) {
cs_per_dimm = binfo->cs_per_ctrl / binfo->dimm_slots_per_ctrl;
@ -405,21 +742,37 @@ compute_fsl_memctl_config_regs(const struct memctl_options_s *popts,
sa >>= 24;
ea >>= 24;
ddr->cs[i].bnds = (((sa & 0xFFF) << 16) | ((ea & 0xFFF) << 0));
ddr->cs[i].bnds =
(((sa & 0xffff) << 16) | ((ea & 0xffff) << 0));
set_csn_config(dimm_number, i, ddr, popts, dimmp);
}
set_timing_cfg_0(ddr, popts);
set_timing_cfg_3(ddr, dimm, cas_latency);
set_timing_cfg_1(ddr, dimm, cas_latency);
set_timing_cfg_0(ddr, popts, dimmp);
set_timing_cfg_3(ddr, popts, dimm, cas_latency, additive_latency);
set_timing_cfg_1(ddr, popts, dimm, cas_latency);
set_timing_cfg_2(ddr, popts, dimm, cas_latency, additive_latency);
ddr->ddr_cdr1 = popts->ddr_cdr1;
ddr->ddr_cdr1 = popts->ddr_cdr2;
set_ddr_sdram_cfg(ddr, popts, dimm);
set_ddr_sdram_cfg_2(ddr, popts);
set_ddr_sdram_mode(ddr, popts, dimm, cas_latency, additive_latency);
set_ddrx_sdram_mode(ddr, popts, dimm, cas_latency, additive_latency);
if (popts->sdram_type == SDRAM_TYPE_DDR3) {
set_ddr_sdram_mode_2(ddr, popts, dimm);
set_timing_cfg_4(ddr, popts);
set_timing_cfg_5(ddr, popts, cas_latency);
zq_en = (popts->zq_en) ? 1 : 0;
set_ddr_zq_cntl(ddr, zq_en);
wrlvl_en = (popts->wrlvl_en) ? 1 : 0;
set_ddr_wrlvl_cntl(ddr, wrlvl_en, popts);
}
set_ddr_sdram_interval(ddr, popts, dimm);
ddr->ddr_data_init = popts->data_init;
ddr->ddr_sdram_clk_cntl = (popts->clk_adjust & 0xF) << 23;
ddr->ddr_sr_cntr = (sr_it & 0xf) << 16;
return check_fsl_memctl_config_regs(ddr);
}

View File

@ -47,6 +47,17 @@ struct fsl_ddr_cfg_regs_s {
uint32_t ddr_sdram_clk_cntl;
uint32_t ddr_init_addr;
uint32_t ddr_init_ext_addr;
uint32_t timing_cfg_4;
uint32_t timing_cfg_5;
uint32_t ddr_zq_cntl;
uint32_t ddr_wrlvl_cntl;
uint32_t ddr_wrlvl_cntl_2;
uint32_t ddr_wrlvl_cntl_3;
uint32_t ddr_sr_cntr;
uint32_t ddr_sdram_rcw_1;
uint32_t ddr_sdram_rcw_2;
uint32_t ddr_cdr1;
uint32_t ddr_cdr2;
uint32_t err_disable;
uint32_t err_int_en;
uint32_t debug[32];
@ -82,8 +93,8 @@ uint32_t compute_fsl_memctl_config_regs(
uint32_t compute_dimm_parameters(
const generic_spd_eeprom_t *spdin,
struct dimm_params_s *pdimm);
uint32_t compute_lowest_common_dimm_parameters(
const struct dimm_params_s *dimm_params,
void compute_lowest_common_dimm_parameters(
const struct fsl_ddr_info_s *pinfo,
struct common_timing_params_s *outpdimm,
uint32_t number_of_dimms);
uint32_t populate_memctl_options(

View File

@ -193,17 +193,12 @@ compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
const struct ddr2_spd_eeprom_s *spd = spdin;
uint32_t retval;
if (!spd->mem_type) {
memset(pdimm, 0, sizeof(struct dimm_params_s));
goto error;
}
if (spd->mem_type != SPD_MEMTYPE_DDR2)
goto error;
retval = ddr2_spd_checksum_pass(spd);
if (retval)
goto spd_err;
goto error;
/*
* The part name in ASCII in the SPD EEPROM is not null terminated.
@ -298,6 +293,4 @@ compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
return 0;
error:
return 1;
spd_err:
return 2;
}

View File

@ -0,0 +1,193 @@
/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
* Dave Liu <daveliu@freescale.com>
*
* calculate the organization and timing parameter
* from ddr3 spd, please refer to the spec
* JEDEC standard No.21-C 4_01_02_11R18.pdf
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* each rank size =
* sdram capacity(bit) / 8 * primary bus width / sdram width
*
* where: sdram capacity = spd byte4[3:0]
* primary bus width = spd byte8[2:0]
* sdram width = spd byte7[2:0]
*
* SPD byte4 - sdram density and banks
* bit[3:0] size(bit) size(byte)
* 0000 256Mb 32MB
* 0001 512Mb 64MB
* 0010 1Gb 128MB
* 0011 2Gb 256MB
* 0100 4Gb 512MB
* 0101 8Gb 1GB
* 0110 16Gb 2GB
*
* SPD byte8 - module memory bus width
* bit[2:0] primary bus width
* 000 8bits
* 001 16bits
* 010 32bits
* 011 64bits
*
* SPD byte7 - module organiztion
* bit[2:0] sdram device width
* 000 4bits
* 001 8bits
* 010 16bits
* 011 32bits
*/
static uint64_t compute_ranksize(const struct ddr3_spd_eeprom_s *spd)
{
uint64_t bsize;
int sdram_cap_bsize = 0, prim_bus_width = 0, sdram_width = 0;
if ((spd->density_banks & 0xf) < 7)
sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
if ((spd->bus_width & 0x7) < 4)
prim_bus_width = (spd->bus_width & 0x7) + 3;
if ((spd->organization & 0x7) < 4)
sdram_width = (spd->organization & 0x7) + 2;
bsize = 1ULL << (sdram_cap_bsize - 3 + prim_bus_width - sdram_width);
return bsize;
}
/*
* compute_dimm_parameters for DDR3 SPD
*
* Compute DIMM parameters based upon the SPD information in spd.
* Writes the results to the dimm_params_s structure pointed by pdimm.
*
*/
uint32_t
compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
struct dimm_params_s *pdimm)
{
const struct ddr3_spd_eeprom_s *spd = spdin;
uint32_t retval, mtb_ps;
int ftb_tmp;
if (spd->mem_type != SPD_MEMTYPE_DDR3)
goto error;
retval = ddr3_spd_checksum_pass(spd);
if (retval)
goto error;
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
if ((spd->info_size_crc & 0xf) > 1)
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
/* DIMM organization parameters */
pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
pdimm->rank_density = compute_ranksize(spd);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
pdimm->data_width = pdimm->primary_sdram_width + pdimm->ec_sdram_width;
pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
if ((spd->bus_width >> 3) & 0x3)
pdimm->ec_sdram_width = 8;
else
pdimm->ec_sdram_width = 0;
pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
/* These are the types defined by the JEDEC DDR3 SPD spec */
pdimm->mirrored_dimm = 0;
pdimm->registered_dimm = 0;
switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
case DDR3_SPD_MODULETYPE_UDIMM:
/* Unbuffered DIMMs */
if (spd->mod_section.unbuffered.addr_mapping & 0x1)
pdimm->mirrored_dimm = 1;
break;
default:
goto error;
}
/* SDRAM device parameters */
pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
pdimm->n_banks_per_sdram_device =
8 << ((spd->density_banks >> 4) & 0x7);
/*
* The SPD spec does not define an ECC bit. The DIMM is considered
* to have ECC capability if the extension bus exists.
*/
if (pdimm->ec_sdram_width)
pdimm->edc_config = 0x02;
else
pdimm->edc_config = 0x00;
/*
* The SPD spec does not define the burst length byte.
* but the DDR3 spec defines BL8 and BC4, on bit 3 and
* bit 2.
*/
pdimm->burst_lengths_bitmask = 0x0c;
pdimm->row_density = __ilog2(pdimm->rank_density);
mtb_ps = (spd->mtb_dividend * 1000) / spd->mtb_divisor;
pdimm->mtb_ps = mtb_ps;
ftb_tmp = spd->ftb_div & 0xf0;
pdimm->ftb_10th_ps = ((ftb_tmp >> 4) * 10) / ftb_tmp;
pdimm->tCKmin_X_ps = spd->tck_min * mtb_ps +
(spd->fine_tck_min * ftb_tmp) / 10;
pdimm->caslat_X = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
pdimm->taa_ps = spd->taa_min * mtb_ps +
(spd->fine_taa_min * ftb_tmp) / 10;
pdimm->tRCD_ps = spd->trcd_min * mtb_ps +
(spd->fine_trcd_min * ftb_tmp) / 10;
pdimm->tRP_ps = spd->trp_min * mtb_ps +
(spd->fine_trp_min * ftb_tmp) / 10;
pdimm->tRAS_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
* mtb_ps;
pdimm->tWR_ps = spd->twr_min * mtb_ps;
pdimm->tWTR_ps = spd->twtr_min * mtb_ps;
pdimm->tRFC_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
* mtb_ps;
pdimm->tRRD_ps = spd->trrd_min * mtb_ps;
pdimm->tRC_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb);
pdimm->tRC_ps *= mtb_ps;
pdimm->tRC_ps += (spd->fine_trc_min * ftb_tmp) / 10;
pdimm->tRTP_ps = spd->trtp_min * mtb_ps;
/*
* Average periodic refresh interval
* tREFI = 7.8 us at normal temperature range
* = 3.9 us at ext temperature range
*/
pdimm->refresh_rate_ps = 7800000;
if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
pdimm->refresh_rate_ps = 3900000;
pdimm->extended_op_srt = 1;
}
pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
* mtb_ps;
return 0;
error:
return 1;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2008 Freescale Semiconductor, Inc.
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
@ -10,12 +10,13 @@
#include <config.h>
#include <asm/io.h>
#include <asm/fsl_ddr_sdram.h>
#include <asm/processor.h>
#include <mach/early_udelay.h>
#include "ddr.h"
int fsl_ddr_set_memctl_regs(const struct fsl_ddr_info_s *info)
{
uint32_t i;
uint32_t i, temp_sdram_cfg;
void __iomem *ddr;
const struct fsl_ddr_cfg_regs_s *regs;
@ -29,6 +30,9 @@ int fsl_ddr_set_memctl_regs(const struct fsl_ddr_info_s *info)
out_be32(ddr + DDR_OFF(CS0_BNDS) + (i << 3), regs->cs[i].bnds);
out_be32(ddr + DDR_OFF(CS0_CONFIG) + (i << 2),
regs->cs[i].config);
if (info->memctl_opts.sdram_type == SDRAM_TYPE_DDR3)
out_be32(ddr + DDR_OFF(CS0_CONFIG_2) + (i << 2),
regs->cs[i].config_2);
}
out_be32(ddr + DDR_OFF(TIMING_CFG_3), regs->timing_cfg_3);
@ -45,12 +49,40 @@ int fsl_ddr_set_memctl_regs(const struct fsl_ddr_info_s *info)
out_be32(ddr + DDR_OFF(SDRAM_INIT_ADDR), regs->ddr_init_addr);
out_be32(ddr + DDR_OFF(SDRAM_INIT_ADDR_EXT), regs->ddr_init_ext_addr);
early_udelay(200);
if (info->memctl_opts.sdram_type == SDRAM_TYPE_DDR3) {
out_be32(ddr + DDR_OFF(TIMING_CFG_4), regs->timing_cfg_4);
out_be32(ddr + DDR_OFF(TIMING_CFG_5), regs->timing_cfg_5);
out_be32(ddr + DDR_OFF(ZQ_CNTL), regs->ddr_zq_cntl);
out_be32(ddr + DDR_OFF(WRLVL_CNTL), regs->ddr_wrlvl_cntl);
if (regs->ddr_wrlvl_cntl_2)
out_be32(ddr + DDR_OFF(WRLVL_CNTL_2),
regs->ddr_wrlvl_cntl_2);
if (regs->ddr_wrlvl_cntl_3)
out_be32(ddr + DDR_OFF(WRLVL_CNTL_3),
regs->ddr_wrlvl_cntl_3);
out_be32(ddr + DDR_OFF(SR_CNTL), regs->ddr_sr_cntr);
out_be32(ddr + DDR_OFF(SDRAM_RCW_1), regs->ddr_sdram_rcw_1);
out_be32(ddr + DDR_OFF(SDRAM_RCW_2), regs->ddr_sdram_rcw_2);
out_be32(ddr + DDR_OFF(DDRCDR1), regs->ddr_cdr1);
out_be32(ddr + DDR_OFF(DDRCDR2), regs->ddr_cdr2);
}
out_be32(ddr + DDR_OFF(ERR_DISABLE), regs->err_disable);
out_be32(ddr + DDR_OFF(ERR_INT_EN), regs->err_int_en);
temp_sdram_cfg = regs->ddr_sdram_cfg;
temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
out_be32(ddr + DDR_OFF(SDRAM_CFG), temp_sdram_cfg);
early_udelay(500);
/* Make sure all instructions are completed before enabling memory.*/
asm volatile("sync;isync");
temp_sdram_cfg = in_be32(ddr + DDR_OFF(SDRAM_CFG)) & ~SDRAM_CFG_BI;
out_be32(ddr + DDR_OFF(SDRAM_CFG), temp_sdram_cfg | SDRAM_CFG_MEM_EN);
asm volatile("sync;isync");
out_be32(ddr + DDR_OFF(SDRAM_CFG), regs->ddr_sdram_cfg);
/* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
while (in_be32(ddr + DDR_OFF(SDRAM_CFG_2)) & SDRAM_CFG2_D_INIT)
early_udelay(10000);

View File

@ -12,6 +12,36 @@
#include "ddr.h"
static uint32_t
compute_cas_latency_ddr3(const struct dimm_params_s *dimm_params,
uint32_t number_of_dimms)
{
uint32_t i, taamin_ps = 0, tckmin_x_ps = 0, common_caslat,
caslat_actual, retry = 16;
const uint32_t mclk_ps = get_memory_clk_period_ps();
/* compute the common CAS latency supported between slots */
common_caslat = dimm_params[0].caslat_X;
for (i = 1; i < number_of_dimms; i++) {
if (dimm_params[i].n_ranks)
common_caslat &= dimm_params[i].caslat_X;
}
for (i = 0; i < number_of_dimms; i++) {
taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tCKmin_X_ps);
}
caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
/* check if the dimms support the CAS latency */
while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
caslat_actual++;
retry--;
}
return caslat_actual;
}
static unsigned int common_burst_length(
const struct dimm_params_s *dimm_params,
const unsigned int number_of_dimms)
@ -22,7 +52,6 @@ static unsigned int common_burst_length(
for (i = 0; i < number_of_dimms; i++)
if (dimm_params[i].n_ranks)
temp &= dimm_params[i].burst_lengths_bitmask;
return temp;
}
@ -115,16 +144,17 @@ static unsigned int compute_lowest_caslat(
* whose parameters have been computed into the array pointed to
* by dimm_params.
*/
unsigned int
compute_lowest_common_dimm_parameters(const struct dimm_params_s *dimm,
void compute_lowest_common_dimm_parameters(const struct fsl_ddr_info_s *pinfo,
struct common_timing_params_s *out,
const unsigned int number_of_dimms)
{
const uint32_t mclk_ps = get_memory_clk_period_ps();
uint32_t temp1, i;
struct common_timing_params_s tmp = {0};
const struct dimm_params_s *dimm = pinfo->dimm_params;
const struct memctl_options_s *popts = &pinfo->memctl_opts;
tmp.tCKmax_ps = 0xFFFFFFFF;
tmp.extended_op_srt = 1;
temp1 = 0;
for (i = 0; i < number_of_dimms; i++) {
if (dimm[i].n_ranks == 0) {
@ -157,58 +187,69 @@ compute_lowest_common_dimm_parameters(const struct dimm_params_s *dimm,
tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps);
tmp.refresh_rate_ps = max(tmp.refresh_rate_ps,
dimm[i].refresh_rate_ps);
tmp.extended_op_srt = min(tmp.extended_op_srt,
dimm[i].extended_op_srt);
/* Find maximum tDQSQ_max_ps to find slowest timing. */
tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps);
}
tmp.ndimms_present = number_of_dimms - temp1;
if (temp1 == number_of_dimms)
return 0;
return;
temp1 = common_burst_length(dimm, number_of_dimms);
tmp.all_DIMMs_burst_lengths_bitmask = temp1;
tmp.all_DIMMs_registered = 0;
tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
number_of_dimms);
/*
* Compute a common 'de-rated' CAS latency.
*
* The strategy here is to find the *highest* de-rated cas latency
* with the assumption that all of the DIMMs will support a de-rated
* CAS latency higher than or equal to their lowest de-rated value.
*/
temp1 = 0;
for (i = 0; i < number_of_dimms; i++)
temp1 = max(temp1, dimm[i].caslat_lowest_derated);
tmp.highest_common_derated_caslat = temp1;
/* Support only unbuffered DIMMs */
tmp.all_DIMMs_registered = 0;
tmp.all_DIMMs_unbuffered = 1;
if (popts->sdram_type == SDRAM_TYPE_DDR3) {
tmp.lowest_common_SPD_caslat = compute_cas_latency_ddr3(dimm,
number_of_dimms);
} else {
tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
number_of_dimms);
/*
* Compute a common 'de-rated' CAS latency.
*
* The strategy here is to find the *highest* de-rated cas
* latency with the assumption that all of the DIMMs will
* support a de-rated CAS latency higher than or equal to
* their lowest de-rated value.
*/
temp1 = 0;
for (i = 0; i < number_of_dimms; i++)
temp1 = max(temp1, dimm[i].caslat_lowest_derated);
tmp.highest_common_derated_caslat = temp1;
}
temp1 = 1;
for (i = 0; i < number_of_dimms; i++)
if (dimm[i].n_ranks &&
!(dimm[i].edc_config & EDC_ECC)) {
if (dimm[i].n_ranks && !(dimm[i].edc_config & EDC_ECC)) {
temp1 = 0;
break;
}
tmp.all_DIMMs_ECC_capable = temp1;
if (mclk_ps > tmp.tCKmax_max_ps)
return 1;
/*
* AL must be less or equal to tRCD. Typically, AL would
* be AL = tRCD - 1;
*
* When ODT read or write is enabled the sum of CAS latency +
* additive latency must be at least 3 cycles.
*
*/
if ((tmp.lowest_common_SPD_caslat < 4) && (picos_to_mclk(tmp.tRCD_ps) >
tmp.lowest_common_SPD_caslat))
tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
tmp.lowest_common_SPD_caslat;
tmp.additive_latency = 0;
if (popts->sdram_type == SDRAM_TYPE_DDR2) {
if ((tmp.lowest_common_SPD_caslat < 4) &&
(picos_to_mclk(tmp.tRCD_ps) >
tmp.lowest_common_SPD_caslat))
tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
tmp.lowest_common_SPD_caslat;
if (mclk_to_picos(tmp.additive_latency) > tmp.tRCD_ps)
tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps);
}
memcpy(out, &tmp, sizeof(struct common_timing_params_s));
return 0;
}

View File

@ -15,6 +15,7 @@
#include <common.h>
#include <config.h>
#include <asm/fsl_law.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
static int get_spd(generic_spd_eeprom_t *spd,
@ -143,6 +144,14 @@ static uint32_t compute_dimm_param(struct fsl_ddr_info_s *pinfo, uint32_t ndimm)
generic_spd_eeprom_t *spd;
uint32_t i, retval;
spd = &(pinfo->spd_installed_dimms[0]);
if (spd->mem_type == SPD_MEMTYPE_DDR3)
pinfo->memctl_opts.sdram_type = SDRAM_TYPE_DDR3;
else if (spd->mem_type == SPD_MEMTYPE_DDR2)
pinfo->memctl_opts.sdram_type = SDRAM_TYPE_DDR2;
else
return 1;
for (i = 0; i < ndimm; i++) {
spd = &(pinfo->spd_installed_dimms[i]);
pdimm = &(pinfo->dimm_params[i]);
@ -185,8 +194,7 @@ uint64_t fsl_ddr_compute(struct fsl_ddr_info_s *pinfo)
* STEP 3: Compute a common set of timing parameters
* suitable for all of the DIMMs on each memory controller
*/
compute_lowest_common_dimm_parameters(pinfo->dimm_params,
timing_params, ndimm);
compute_lowest_common_dimm_parameters(pinfo, timing_params, ndimm);
/* STEP 4: Gather configuration requirements from user */
populate_memctl_options(timing_params->all_DIMMs_registered,

View File

@ -46,18 +46,42 @@ uint32_t populate_memctl_options(int all_DIMMs_registered,
* 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
*/
if (pdimm->n_ranks != 0) {
if ((pdimm->data_width >= 64) && (pdimm->data_width <= 72))
popts->data_bus_width = 0;
else if ((pdimm->data_width >= 32) &&
(pdimm->data_width <= 40))
popts->data_bus_width = 1;
else
panic("data width %u is invalid!\n",
pdimm->data_width);
if (popts->sdram_type == SDRAM_TYPE_DDR3) {
if (pdimm[0].primary_sdram_width == 64)
popts->data_bus_width = 0;
else if (pdimm[0].primary_sdram_width == 32)
popts->data_bus_width = 1;
else if (pdimm[0].primary_sdram_width == 16)
popts->data_bus_width = 2;
else
hang();
} else {
if ((pdimm->data_width >= 64) &&
(pdimm->data_width <= 72))
popts->data_bus_width = 0;
else if ((pdimm->data_width >= 32) &&
(pdimm->data_width <= 40))
popts->data_bus_width = 1;
else
hang();
}
}
if (popts->sdram_type == SDRAM_TYPE_DDR3) {
if (popts->data_bus_width == 0) {
popts->otf_burst_chop_en = 1;
popts->burst_length = DDR_OTF;
} else {
/* 32-bit or 16-bit bus */
popts->otf_burst_chop_en = 0;
popts->burst_length = DDR_BL8;
}
popts->mirrored_dimm = pdimm[0].mirrored_dimm;
} else {
/* Must be a burst length of 4 for DDR2 */
popts->burst_length = DDR_BL4;
}
/* Must be a burst length of 4 for DD2 */
popts->burst_length = DDR_BL4;
/* Decide whether to use the computed de-rated latency */
popts->use_derated_caslat = 0;
@ -70,6 +94,7 @@ uint32_t populate_memctl_options(int all_DIMMs_registered,
* - how much time you want to spend playing around
*/
popts->twoT_en = 0;
popts->threet_en = 0;
/*
* Default BSTTOPRE precharge interval
@ -90,7 +115,18 @@ uint32_t populate_memctl_options(int all_DIMMs_registered,
* The default value below would work for x4/x8 wide memory.
*
*/
popts->tFAW_window_four_activates_ps = 37500;
if (popts->sdram_type == SDRAM_TYPE_DDR2) {
popts->tFAW_window_four_activates_ps = 37500;
} else {
/*
* Due to ddr3 dimm fly-by topology, enable write leveling
* to meet the tQDSS under different loading.
*/
popts->tFAW_window_four_activates_ps = pdimm[0].tfaw_ps;
popts->wrlvl_en = 1;
popts->zq_en = 1;
popts->wrlvl_override = 0;
}
/*
* Default powerdown exit timings.

View File

@ -21,6 +21,8 @@ struct dimm_params_s {
uint32_t primary_sdram_width;
uint32_t ec_sdram_width;
uint32_t registered_dimm;
uint32_t device_width;
/* SDRAM device parameters */
uint32_t n_row_addr;
uint32_t n_col_addr;
uint32_t edc_config; /* 0 = none, 1 = parity, 2 = ECC */
@ -28,6 +30,11 @@ struct dimm_params_s {
uint32_t burst_lengths_bitmask; /* BL=4 bit 2, BL=8 = bit 3 */
uint32_t row_density;
uint64_t base_address;
uint32_t mirrored_dimm;
uint32_t mtb_ps;
uint32_t ftb_10th_ps;
uint32_t taa_ps;
uint32_t tfaw_ps;
/* SDRAM clock periods */
uint32_t tCKmin_X_ps;
uint32_t tCKmin_X_minus_1_ps;
@ -48,6 +55,7 @@ struct dimm_params_s {
uint32_t tRRD_ps; /* maximum = 63750 ps */
uint32_t tRC_ps; /* maximum = 254 ns + .75 ns = 254750 ps */
uint32_t refresh_rate_ps;
uint32_t extended_op_srt;
uint32_t tIS_ps; /* byte 32, spd->ca_setup */
uint32_t tIH_ps; /* byte 33, spd->ca_hold */
uint32_t tDS_ps; /* byte 34, spd->data_setup */
@ -55,6 +63,7 @@ struct dimm_params_s {
uint32_t tRTP_ps; /* byte 38, spd->trtp */
uint32_t tDQSQ_max_ps; /* byte 44, spd->tdqsq */
uint32_t tQHS_ps; /* byte 45, spd->tqhs */
uint32_t rcw[16];
};
#endif

View File

@ -19,17 +19,24 @@
#define SDRAM_TYPE_DDR3 7
#define DDR_BL4 4
#define DDR_BC4 DDR_BL4
#define DDR_OTF 6
#define DDR_BL8 8
#define DDR2_RTT_OFF 0
#define DDR2_RTT_75_OHM 1
#define DDR2_RTT_150_OHM 2
#define DDR2_RTT_50_OHM 3
#define DDR3_RTT_OFF 0
#define DDR3_RTT_40_OHM 3
#if defined(CONFIG_FSL_DDR2)
#define FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR (3)
#if defined(CONFIG_FSL_DDR2)
typedef struct ddr2_spd_eeprom_s generic_spd_eeprom_t;
#define FSL_SDRAM_TYPE SDRAM_TYPE_DDR2
#elif defined(CONFIG_FSL_DDR3)
typedef struct ddr3_spd_eeprom_s generic_spd_eeprom_t;
#define FSL_SDRAM_TYPE SDRAM_TYPE_DDR3
#endif
#define FSL_DDR_ODT_NEVER 0x0
@ -121,6 +128,10 @@ struct memctl_options_s {
uint32_t dynamic_power;
uint32_t data_bus_width;
uint32_t burst_length;
uint32_t otf_burst_chop_en;
uint32_t mirrored_dimm;
uint32_t ap_en;
uint32_t x4_en;
/* Global Timing Parameters */
uint32_t cas_latency_override;
uint32_t cas_latency_override_value;
@ -130,16 +141,36 @@ struct memctl_options_s {
uint32_t clk_adjust;
uint32_t cpo_override;
uint32_t write_data_delay;
/* Write leveling */
uint32_t wrlvl_override;
uint32_t wrlvl_sample;
uint32_t wrlvl_start;
uint32_t wrlvl_ctl_2;
uint32_t wrlvl_ctl_3;
uint32_t half_strength_driver_enable;
uint32_t twoT_en;
uint32_t threet_en;
uint32_t bstopre;
uint32_t tCKE_clock_pulse_width_ps;
uint32_t tFAW_window_four_activates_ps;
/* Rtt impedance */
uint32_t rtt_override;
uint32_t rtt_override_value;
uint32_t rtt_wr_override_value;
/* Automatic self refresh */
uint32_t auto_self_refresh_en;
uint32_t sr_it;
/* ZQ calibration */
uint32_t zq_en;
/* Write leveling */
uint32_t wrlvl_en;
/* RCW override for RDIMM */
uint32_t rcw_override;
uint32_t rcw_1;
uint32_t rcw_2;
/* control register 1 */
uint32_t ddr_cdr1;
uint32_t ddr_cdr2;
/* read-to-write turnaround */
uint32_t trwt_override;
uint32_t trwt;