9
0
Fork 0
barebox/drivers/mci/imx-esdhc.c

617 lines
16 KiB
C

/*
* Copyright 2007,2010 Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <config.h>
#include <common.h>
#include <driver.h>
#include <init.h>
#include <of.h>
#include <malloc.h>
#include <mci.h>
#include <clock.h>
#include <io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <asm/mmu.h>
#include <mach/generic.h>
#include <mach/esdhc.h>
#include <gpio.h>
#include "sdhci.h"
#include "imx-esdhc.h"
#define IMX_SDHCI_WML 0x44
#define IMX_SDHCI_MIXCTRL 0x48
struct fsl_esdhc_host {
struct mci_host mci;
void __iomem *regs;
struct device_d *dev;
struct clk *clk;
};
#define to_fsl_esdhc(mci) container_of(mci, struct fsl_esdhc_host, mci)
#define SDHCI_CMD_ABORTCMD (0xC0 << 16)
/* Return the XFERTYP flags for a given command and data packet */
static u32 esdhc_xfertyp(struct mci_cmd *cmd, struct mci_data *data)
{
u32 xfertyp = 0;
if (data) {
xfertyp |= COMMAND_DPSEL;
#ifndef CONFIG_MCI_IMX_ESDHC_PIO
xfertyp |= TRANSFER_MODE_DMAEN;
#endif
if (data->blocks > 1) {
xfertyp |= TRANSFER_MODE_MSBSEL;
xfertyp |= TRANSFER_MODE_BCEN;
}
if (data->flags & MMC_DATA_READ)
xfertyp |= TRANSFER_MODE_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= COMMAND_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= COMMAND_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= COMMAND_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= COMMAND_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= COMMAND_RSPTYP_48;
if ((cpu_is_mx51() || cpu_is_mx53()) &&
cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= SDHCI_CMD_ABORTCMD;
return COMMAND_CMD(cmd->cmdidx) | xfertyp;
}
#ifdef CONFIG_MCI_IMX_ESDHC_PIO
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void
esdhc_pio_read_write(struct mci_host *mci, struct mci_data *data)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
u32 blocks;
char *buffer;
u32 databuf;
u32 size;
u32 irqstat;
u32 timeout;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
while (!(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_BREN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Read Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
databuf = esdhc_read32(regs + SDHCI_BUFFER);
*((u32 *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
while (!(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_BWEN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Write Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((u32 *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
esdhc_write32(regs+ SDHCI_BUFFER, databuf);
}
blocks--;
}
}
}
#endif
static int esdhc_setup_data(struct mci_host *mci, struct mci_data *data)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
#ifndef CONFIG_MCI_IMX_ESDHC_PIO
u32 wml_value;
wml_value = data->blocksize/4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > 0x10)
wml_value = 0x10;
esdhc_clrsetbits32(regs + IMX_SDHCI_WML, WML_RD_WML_MASK, wml_value);
esdhc_write32(regs + SDHCI_DMA_ADDRESS, (u32)data->dest);
} else {
if (wml_value > 0x80)
wml_value = 0x80;
if ((esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
return -ETIMEDOUT;
}
esdhc_clrsetbits32(regs + IMX_SDHCI_WML, WML_WR_WML_MASK,
wml_value << 16);
esdhc_write32(regs + SDHCI_DMA_ADDRESS, (u32)data->src);
}
#else /* CONFIG_MCI_IMX_ESDHC_PIO */
if (!(data->flags & MMC_DATA_READ)) {
if ((esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. "
"Can not write to a locked card.\n\n");
return -ETIMEDOUT;
}
esdhc_write32(regs + SDHCI_DMA_ADDRESS, (u32)data->src);
} else
esdhc_write32(regs + SDHCI_DMA_ADDRESS, (u32)data->dest);
#endif /* CONFIG_MCI_IMX_ESDHC_PIO */
esdhc_write32(regs + SDHCI_BLOCK_SIZE__BLOCK_COUNT, data->blocks << 16 | data->blocksize);
return 0;
}
/*
* Sends a command out on the bus. Takes the mci pointer,
* a command pointer, and an optional data pointer.
*/
static int
esdhc_send_cmd(struct mci_host *mci, struct mci_cmd *cmd, struct mci_data *data)
{
u32 xfertyp, mixctrl;
u32 irqstat;
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
int ret;
esdhc_write32(regs + SDHCI_INT_STATUS, -1);
/* Wait at least 8 SD clock cycles before the next command */
udelay(1);
/* Set up for a data transfer if we have one */
if (data) {
int err;
err = esdhc_setup_data(mci, data);
if(err)
return err;
if (data->flags & MMC_DATA_WRITE) {
dma_flush_range((unsigned long)data->src,
(unsigned long)(data->src + data->blocks * 512));
} else
dma_clean_range((unsigned long)data->src,
(unsigned long)(data->src + data->blocks * 512));
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Send the command */
esdhc_write32(regs + SDHCI_ARGUMENT, cmd->cmdarg);
if (cpu_is_mx6()) {
/* write lower-half of xfertyp to mixctrl */
mixctrl = xfertyp & 0xFFFF;
/* Keep the bits 22-25 of the register as is */
mixctrl |= (esdhc_read32(regs + IMX_SDHCI_MIXCTRL) & (0xF << 22));
esdhc_write32(regs + IMX_SDHCI_MIXCTRL, mixctrl);
}
esdhc_write32(regs + SDHCI_TRANSFER_MODE__COMMAND, xfertyp);
/* Wait for the command to complete */
ret = wait_on_timeout(100 * MSECOND,
esdhc_read32(regs + SDHCI_INT_STATUS) & IRQSTAT_CC);
if (ret) {
dev_dbg(host->dev, "timeout 1\n");
return -ETIMEDOUT;
}
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
esdhc_write32(regs + SDHCI_INT_STATUS, irqstat);
if (irqstat & CMD_ERR)
return -EIO;
if (irqstat & IRQSTAT_CTOE)
return -ETIMEDOUT;
/* Workaround for ESDHC errata ENGcm03648 / ENGcm12360 */
if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
/*
* Poll on DATA0 line for cmd with busy signal for
* timout / 10 usec since DLA polling can be insecure.
*/
ret = wait_on_timeout(2500 * MSECOND,
(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_DAT0));
if (ret) {
dev_err(host->dev, "timeout PRSSTAT_DAT0\n");
return -ETIMEDOUT;
}
}
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(regs + SDHCI_RESPONSE_3);
cmdrsp2 = esdhc_read32(regs + SDHCI_RESPONSE_2);
cmdrsp1 = esdhc_read32(regs + SDHCI_RESPONSE_1);
cmdrsp0 = esdhc_read32(regs + SDHCI_RESPONSE_0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(regs + SDHCI_RESPONSE_0);
/* Wait until all of the blocks are transferred */
if (data) {
#ifdef CONFIG_MCI_IMX_ESDHC_PIO
esdhc_pio_read_write(mci, data);
#else
do {
irqstat = esdhc_read32(regs + SDHCI_INT_STATUS);
if (irqstat & DATA_ERR)
return -EIO;
if (irqstat & IRQSTAT_DTOE)
return -ETIMEDOUT;
} while (!(irqstat & IRQSTAT_TC) &&
(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_DLA));
if (data->flags & MMC_DATA_READ) {
dma_inv_range((unsigned long)data->dest,
(unsigned long)(data->dest + data->blocks * 512));
}
#endif
}
esdhc_write32(regs + SDHCI_INT_STATUS, -1);
/* Wait for the bus to be idle */
ret = wait_on_timeout(SECOND,
!(esdhc_read32(regs + SDHCI_PRESENT_STATE) &
(PRSSTAT_CICHB | PRSSTAT_CIDHB)));
if (ret) {
dev_err(host->dev, "timeout 2\n");
return -ETIMEDOUT;
}
ret = wait_on_timeout(100 * MSECOND,
!(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_DLA));
if (ret) {
dev_err(host->dev, "timeout 3\n");
return -ETIMEDOUT;
}
return 0;
}
static void set_sysctl(struct mci_host *mci, u32 clock)
{
int div, pre_div;
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
int sdhc_clk = clk_get_rate(host->clk);
u32 clk;
unsigned long cur_clock;
/*
* With eMMC and imx53 (sdhc_clk=200MHz) a pre_div of 1 results in
* pre_div=1,div=4 (=50MHz)
* which is valid and should work, but somehow doesn't.
* Starting with pre_div=2 gives
* pre_div=2, div=2 (=50MHz)
* and works fine.
*/
pre_div = 2;
if (sdhc_clk == clock)
pre_div = 1;
else if (sdhc_clk / 16 > clock)
for (; pre_div < 256; pre_div *= 2)
if ((sdhc_clk / pre_div) <= (clock * 16))
break;
for (div = 1; div <= 16; div++)
if ((sdhc_clk / (div * pre_div)) <= clock)
break;
cur_clock = sdhc_clk / pre_div / div;
dev_dbg(host->dev, "set clock: wanted: %d got: %ld\n", clock, cur_clock);
dev_dbg(host->dev, "pre_div: %d div: %d\n", pre_div, div);
/* the register values start with 0 */
div -= 1;
pre_div >>= 1;
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_CKEN);
esdhc_clrsetbits32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_CLOCK_MASK, clk);
wait_on_timeout(10 * MSECOND,
!(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_SDSTB));
clk = SYSCTL_PEREN | SYSCTL_CKEN;
esdhc_setbits32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
clk);
}
static void esdhc_set_ios(struct mci_host *mci, struct mci_ios *ios)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
/* Set the clock speed */
set_sysctl(mci, ios->clock);
/* Set the bus width */
esdhc_clrbits32(regs + SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
PROCTL_DTW_4 | PROCTL_DTW_8);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
esdhc_setbits32(regs + SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
PROCTL_DTW_4);
break;
case MMC_BUS_WIDTH_8:
esdhc_setbits32(regs + SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
PROCTL_DTW_8);
break;
case MMC_BUS_WIDTH_1:
break;
default:
return;
}
}
static int esdhc_card_present(struct mci_host *mci)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
struct esdhc_platform_data *pdata = host->dev->platform_data;
int ret;
if (!pdata)
return 1;
switch (pdata->cd_type) {
case ESDHC_CD_NONE:
case ESDHC_CD_PERMANENT:
return 1;
case ESDHC_CD_CONTROLLER:
return !(esdhc_read32(regs + SDHCI_PRESENT_STATE) & PRSSTAT_WPSPL);
case ESDHC_CD_GPIO:
ret = gpio_direction_input(pdata->cd_gpio);
if (ret)
return ret;
return gpio_get_value(pdata->cd_gpio) ? 0 : 1;
}
return 0;
}
static int esdhc_init(struct mci_host *mci, struct device_d *dev)
{
struct fsl_esdhc_host *host = to_fsl_esdhc(mci);
void __iomem *regs = host->regs;
int timeout = 1000;
int ret = 0;
/* Reset the entire host controller */
esdhc_write32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_RSTA);
/* Wait until the controller is available */
while ((esdhc_read32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET)
& SYSCTL_RSTA) && --timeout)
udelay(1000);
esdhc_write32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
set_sysctl(mci, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(regs + SDHCI_INT_ENABLE, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(regs + SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_TIMEOUT_MASK, 14 << 16);
return ret;
}
static int esdhc_reset(void __iomem *regs)
{
uint64_t start;
/* reset the controller */
esdhc_write32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
SYSCTL_RSTA);
start = get_time_ns();
/* hardware clears the bit when it is done */
while (1) {
if (!(esdhc_read32(regs + SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET)
& SYSCTL_RSTA))
break;
if (is_timeout(start, 100 * MSECOND)) {
printf("MMC/SD: Reset never completed.\n");
return -EIO;
}
}
return 0;
}
static int fsl_esdhc_detect(struct device_d *dev)
{
struct fsl_esdhc_host *host = dev->priv;
return mci_detect_card(&host->mci);
}
static int fsl_esdhc_probe(struct device_d *dev)
{
struct fsl_esdhc_host *host;
struct mci_host *mci;
u32 caps;
int ret;
unsigned long rate;
struct esdhc_platform_data *pdata = dev->platform_data;
host = xzalloc(sizeof(*host));
mci = &host->mci;
host->clk = clk_get(dev, NULL);
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
host->dev = dev;
host->regs = dev_request_mem_region(dev, 0);
/* First reset the eSDHC controller */
ret = esdhc_reset(host->regs);
if (ret) {
free(host);
return ret;
}
caps = esdhc_read32(host->regs + SDHCI_CAPABILITIES);
if (caps & ESDHC_HOSTCAPBLT_VS18)
mci->voltages |= MMC_VDD_165_195;
if (caps & ESDHC_HOSTCAPBLT_VS30)
mci->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & ESDHC_HOSTCAPBLT_VS33)
mci->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
if (pdata && pdata->caps)
mci->host_caps = pdata->caps;
else
mci->host_caps = MMC_CAP_4_BIT_DATA;
if (pdata && pdata->devname) {
mci->devname = pdata->devname;
} else if (dev->device_node) {
const char *alias = of_alias_get(dev->device_node);
if (alias)
mci->devname = xstrdup(alias);
}
if (caps & ESDHC_HOSTCAPBLT_HSS)
mci->host_caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
host->mci.send_cmd = esdhc_send_cmd;
host->mci.set_ios = esdhc_set_ios;
host->mci.init = esdhc_init;
host->mci.card_present = esdhc_card_present;
host->mci.hw_dev = dev;
dev->detect = fsl_esdhc_detect,
rate = clk_get_rate(host->clk);
host->mci.f_min = rate >> 12;
if (host->mci.f_min < 200000)
host->mci.f_min = 200000;
host->mci.f_max = rate;
if (pdata) {
host->mci.use_dsr = pdata->use_dsr;
host->mci.dsr_val = pdata->dsr_val;
}
mci_of_parse(&host->mci);
dev->priv = host;
return mci_register(&host->mci);
}
static __maybe_unused struct of_device_id fsl_esdhc_compatible[] = {
{
.compatible = "fsl,imx25-esdhc",
}, {
.compatible = "fsl,imx51-esdhc",
}, {
.compatible = "fsl,imx53-esdhc",
}, {
.compatible = "fsl,imx6q-usdhc",
}, {
/* sentinel */
}
};
static struct driver_d fsl_esdhc_driver = {
.name = "imx-esdhc",
.probe = fsl_esdhc_probe,
.of_compatible = DRV_OF_COMPAT(fsl_esdhc_compatible),
};
device_platform_driver(fsl_esdhc_driver);