9
0
Fork 0
barebox/drivers/net/fec_mpc5200.c

832 lines
21 KiB
C

/*
* (C) Copyright 2003-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This file is based on mpc4200fec.c,
* (C) Copyright Motorola, Inc., 2000
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#define DEBUG
#include <common.h>
//#include <asm/arch/mpc5xxx.h>
#include <malloc.h>
#include <net.h>
#include <init.h>
#include <miiphy.h>
#include <driver.h>
//#include <asm/arch/sdma.h>
//#include <asm/arch/fec.h>
#include <asm-ppc/arch-mpc5200/fec.h>
//#include <asm/arch/clocks.h>
#include <miiphy.h>
#include "fec_mpc5200.h"
#include <asm/io.h>
#ifdef CONFIG_ARCH_IMX27
#include <asm/arch/imx-regs.h>
#include <clock.h>
#include <asm/arch/clock.h>
#include <xfuncs.h>
#endif
extern int memory_display(char *addr, ulong offs, ulong nbytes, int size);
#define CONFIG_PHY_ADDR 1 /* FIXME */
typedef struct {
uint8 data[1500]; /* actual data */
int length; /* actual length */
int used; /* buffer in use or not */
uint8 head[16]; /* MAC header(6 + 6 + 2) + 2(aligned) */
} NBUF;
/*
* MII-interface related functions
*/
static int fec5xxx_miiphy_read(struct miiphy_device *mdev, uint8_t phyAddr,
uint8_t regAddr, uint16_t * retVal)
{
struct eth_device *edev = mdev->edev;
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
uint32 reg; /* convenient holder for the PHY register */
uint32 phy; /* convenient holder for the PHY */
uint64_t start;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, &fec->eth->mii_data);
/*
* wait for the related interrupt
*/
start = get_time_ns();
while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/*
* clear mii interrupt bit
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
/*
* it's now safe to read the PHY's register
*/
*retVal = readl(&fec->eth->mii_data);
return 0;
}
static int fec5xxx_miiphy_write(struct miiphy_device *mdev, uint8_t phyAddr,
uint8_t regAddr, uint16_t data)
{
struct eth_device *edev = mdev->edev;
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
uint32 reg; /* convenient holder for the PHY register */
uint32 phy; /* convenient holder for the PHY */
uint64_t start;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
/*
* wait for the MII interrupt
*/
start = get_time_ns();
while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/*
* clear MII interrupt bit
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
return 0;
}
#ifdef CONFIG_MPC5200
static int mpc5xxx_fec_rx_task_enable(mpc5xxx_fec_priv *fec)
{
SDMA_TASK_ENABLE(FEC_RECV_TASK_NO);
return 0;
}
static int mpc5xxx_fec_rx_task_disable(mpc5xxx_fec_priv *fec)
{
SDMA_TASK_DISABLE(FEC_RECV_TASK_NO);
return 0;
}
static int mpc5xxx_fec_tx_task_enable(mpc5xxx_fec_priv *fec)
{
SDMA_TASK_ENABLE(FEC_XMIT_TASK_NO);
return 0;
}
static int mpc5xxx_fec_tx_task_disable(mpc5xxx_fec_priv *fec)
{
SDMA_TASK_DISABLE(FEC_XMIT_TASK_NO);
return 0;
}
#endif
#ifdef CONFIG_ARCH_IMX27
static int mpc5xxx_fec_rx_task_enable(mpc5xxx_fec_priv *fec)
{
writel(1 << 24, &fec->eth->r_des_active);
return 0;
}
static int mpc5xxx_fec_rx_task_disable(mpc5xxx_fec_priv *fec)
{
return 0;
}
static int mpc5xxx_fec_tx_task_enable(mpc5xxx_fec_priv *fec)
{
writel(1 << 24, &fec->eth->x_des_active);
return 0;
}
static int mpc5xxx_fec_tx_task_disable(mpc5xxx_fec_priv *fec)
{
return 0;
}
#endif
/**
* allocate and link buffers for the receive task
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] size size of each receive buffer
* @return 0 on success
*
* We need some alignment for the buffers. Thy must be
* aligned to a specific boundary each. See RDB_ALIGNMENT
*/
static int mpc5xxx_fec_rbd_init(mpc5xxx_fec_priv *fec, int count, int size)
{
int ix;
static int once = 0;
uint32 p;
printf("%s\n", __FUNCTION__);
size += RDB_ALIGNMENT; /* enlarge the size for alignment */
for (ix = 0; ix < count; ix++) {
if (!once) {
p = (uint32)xzalloc(size);
p += RDB_ALIGNMENT - 1;
p &= ~(RDB_ALIGNMENT - 1);
writel(p, &fec->rbdBase[ix].dataPointer);
}
writew(FEC_RBD_EMPTY, &fec->rbdBase[ix].status);
writew(0, &fec->rbdBase[ix].dataLength);
}
once ++;
/*
* have the last RBD to close the ring
*/
writew(FEC_RBD_WRAP | readl(&fec->rbdBase[ix - 1].status), &fec->rbdBase[ix - 1].status);
fec->rbdIndex = 0;
return 0;
}
/**
* initialize buffers for the transmit task
* @param[in] fec all we know about the device yet
*
* Nothing special here to do. We ony using one bufffer
* for all transmit operations.
*/
static void mpc5xxx_fec_tbd_init(mpc5xxx_fec_priv *fec)
{
writew(FEC_TBD_WRAP, &fec->tbdBase[0].status);
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] pRbd buffer descriptor to mark free again
*/
static void mpc5xxx_fec_rbd_clean(int last, FEC_RBD *pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if (last)
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
else
writew(FEC_RBD_EMPTY, &pRbd->status);
/*
* no data in it
*/
writew(0, &pRbd->dataLength);
}
static int mpc5xxx_fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
{
/* no eeprom */
return -1;
}
static int mpc5xxx_fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
//#define WTF_IS_THIS
#ifdef WTF_IS_THIS
uint32 crc = 0xffffffff; /* initial value */
uint8 currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
int bit; /* loop - counter */
/*
* The algorithm used is the following:
* we loop on each of the six bytes of the provided address,
* and we compute the CRC by left-shifting the previous
* value by one position, so that each bit in the current
* byte of the address may contribute the calculation. If
* the latter and the MSB in the CRC are different, then
* the CRC value so computed is also ex-ored with the
* "polynomium generator". The current byte of the address
* is also shifted right by one bit at each iteration.
* This is because the CRC generatore in hardware is implemented
* as a shift-register with as many ex-ores as the radixes
* in the polynomium. This suggests that we represent the
* polynomiumm itself as a 32-bit constant.
*/
for (byte = 0; byte < 6; byte++) {
currByte = mac[byte];
for (bit = 0; bit < 8; bit++) {
if ((currByte & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
currByte >>= 1;
}
}
crc = crc >> 26;
/*
* Set individual hash table register
*/
if (crc >= 32) {
fec->eth->iaddr1 = (1 << (crc - 32));
fec->eth->iaddr2 = 0;
} else {
fec->eth->iaddr1 = 0;
fec->eth->iaddr2 = (1 << crc);
}
#else
writel(0, &fec->eth->iaddr1);
writel(0, &fec->eth->iaddr2);
writel(0, &fec->eth->gaddr1);
writel(0, &fec->eth->gaddr2);
#endif
/*
* Set physical address
*/
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
return 0;
}
static int mpc5xxx_fec_init(struct eth_device *dev)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
#ifdef CONFIG_MPC5200
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
#endif
debug("mpc5xxx_fec_init... Begin\n");
/*
* Initialize RxBD/TxBD rings
*/
mpc5xxx_fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
mpc5xxx_fec_tbd_init(fec);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, &fec->eth->ievent);
/*
* Set interrupt mask register
*/
writel(0x00000000, &fec->eth->imask);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
if (fec->xcv_type == SEVENWIRE) {
/*
* Frame length=1518; 7-wire mode
*/
writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
} else {
/*
* Frame length=1518; MII mode;
*/
writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
#ifdef CONFIG_MPC5200
writel(((get_ipb_clock() >> 20) / 5) << 1, &fec->eth->mii_speed); /* No MII for 7-wire mode */
#endif
#ifdef CONFIG_ARCH_IMX27
writel(((imx_get_ahbclk() >> 20) / 5) << 1, &fec->eth->mii_speed); /* No MII for 7-wire mode */
#endif
}
/*
* Set Opcode/Pause Duration Register
*/
writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
#ifdef CONFIG_MPC5200
/*
* Set Rx FIFO alarm and granularity value
*/
writel(0x0c000000 | (readl(&fec->eth->rfifo_cntrl) & ~0x0f000000)), &fec->eth->rfifo_cntrl);
writel(0x0000030c, &fec->eth->rfifo_alarm);
if (readl(&fec->eth->rfifo_status) & 0x00700000 ) {
debug("mpc5xxx_fec_init() RFIFO error\n");
}
/*
* Set Tx FIFO granularity value
*/
writel(0x0c000000 | (readl(&fec->eth->tfifo_cntrl)& ~0x0f000000), &fec->eth->tfifo_cntrl);
debug("tfifo_status: 0x%08x\n", readl(&fec->eth->tfifo_status));
debug("tfifo_alarm: 0x%08x\n", readl(&fec->eth->tfifo_alarm));
/*
* Set transmit fifo watermark register(X_WMRK), default = 64
*/
writel(0x00000080, &fec->eth->tfifo_alarm);
/*
* Turn ON cheater FSM: ????
*/
writel(0x03000000, &fec->eth->xmit_fsm);
#endif
writel(0x2, &fec->eth->x_wmrk);
/*
* Set multicast address filter
*/
writel(0x00000000, &fec->eth->gaddr1);
writel(0x00000000, &fec->eth->gaddr2);
#ifdef CONFIG_MPC5200
/*
* Set priority of different initiators
*/
sdma->IPR0 = 7; /* always */
sdma->IPR3 = 6; /* Eth RX */
sdma->IPR4 = 5; /* Eth Tx */
#endif
#ifdef CONFIG_ARCH_IMX27
writel(2048-16, &fec->eth->emrbr);
#endif
/*
* Clear SmartDMA task interrupt pending bits
*/
// SDMA_CLEAR_IEVENT(FEC_RECV_TASK_NO);
/*
* Initialize SmartDMA parameters stored in SRAM
*/
#ifdef CONFIG_MPC5200
*(volatile int *)FEC_TBD_BASE = (int)fec->tbdBase;
*(volatile int *)FEC_RBD_BASE = (int)fec->rbdBase;
*(volatile int *)FEC_TBD_NEXT = (int)fec->tbdBase;
*(volatile int *)FEC_RBD_NEXT = (int)fec->rbdBase;
#endif
debug("mpc5xxx_fec_init... Done \n");
if (fec->xcv_type != SEVENWIRE)
miiphy_restart_aneg(&fec->miiphy);
return 0;
}
static int mpc5xxx_fec_open(struct eth_device *edev)
{
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)edev->priv;
printf("%s\n", __FUNCTION__);
#if defined(CONFIG_MPC5200)
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
/*
* Turn off COMM bus prefetch in the MGT5200 BestComm. It doesn't
* work w/ the current receive task.
*/
sdma->PtdCntrl |= 0x00000001;
#endif
#if 0
writel(0x00000000, &fec->eth->x_cntrl); /* half-duplex, heartbeat disabled */
#else
writel(1 << 2, &fec->eth->x_cntrl); /* full-duplex, heartbeat disabled */
#endif
fec->rbdIndex = 0;
/*
* Enable FEC-Lite controller
*/
#if defined(CONFIG_MPC5200)
writel(0x00000006 | readl(&fec->eth->ecntrl), &fec->eth->ecntrl);
#endif
#if defined(CONFIG_ARCH_IMX27)
writel(0x00000002 | readl(&fec->eth->ecntrl), &fec->eth->ecntrl);
#endif
/*
* Enable SmartDMA receive task
*/
mpc5xxx_fec_rx_task_enable(fec);
if (fec->xcv_type != SEVENWIRE) {
miiphy_wait_aneg(&fec->miiphy);
miiphy_print_status(&fec->miiphy);
}
return 0;
}
static void mpc5xxx_fec_halt(struct eth_device *dev)
{
#if defined(CONFIG_MPC5200)
struct mpc5xxx_sdma *sdma = (struct mpc5xxx_sdma *)MPC5XXX_SDMA;
#endif
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
int counter = 0xffff;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
;
/*
* Disable SmartDMA tasks
*/
mpc5xxx_fec_tx_task_disable(fec);
mpc5xxx_fec_rx_task_disable(fec);
#ifdef CONFIG_MPC5200
/*
* Turn on COMM bus prefetch in the MGT5200 BestComm after we're
* done. It doesn't work w/ the current receive task.
*/
sdma->PtdCntrl &= ~0x00000001;
#endif
/*
* Disable the Ethernet Controller
*/
writel(0, &fec->eth->ecntrl);
#ifdef CONFIG_MPC5200
/*
* Clear FIFO status registers
*/
writel(0x00700000 & readl(&fec->eth->rfifo_status), &fec->eth->rfifo_status);
writel(0x00700000 & readl(&fec->eth->tfifo_status), &fec->eth->tfifo_status);
#endif
// writel(0x01000000, &fec->eth->reset_cntrl);
debug("Ethernet task stopped\n");
}
#ifdef DEBUG_FIFO
static void tfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
if ((readl(&fec->eth->tfifo_lrf_ptr) != readl(&fec->eth->tfifo_lwf_ptr))
|| (readl(&fec->eth->tfifo_rdptr) != readl(&fec->eth->tfifo_wrptr))) {
printf("ecntrl: 0x%08x\n", readl(&fec->eth->ecntrl));
printf("ievent: 0x%08x\n", readl(&fec->eth->ievent));
printf("x_status: 0x%08x\n", readl(&fec->eth->x_status));
printf("tfifo: status 0x%08x\n", readl(&fec->eth->tfifo_status));
printf(" control 0x%08x\n", readl(&fec->eth->tfifo_cntrl));
printf(" lrfp 0x%08x\n", readl(&fec->eth->tfifo_lrf_ptr));
printf(" lwfp 0x%08x\n", readl(&fec->eth->tfifo_lwf_ptr));
printf(" alarm 0x%08x\n", readl(&fec->eth->tfifo_alarm));
printf(" readptr 0x%08x\n", readl(&fec->eth->tfifo_rdptr));
printf(" writptr 0x%08x\n", readl(&fec->eth->tfifo_wrptr));
}
}
static void rfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
if ((readl(&fec->eth->rfifo_lrf_ptr) != readl(&fec->eth->rfifo_lwf_ptr))
|| (readl(&fec->eth->rfifo_rdptr) != readl(&fec->eth->rfifo_wrptr))) {
printf("ecntrl: 0x%08x\n", readl(&fec->eth->ecntrl));
printf("ievent: 0x%08x\n", readl(&fec->eth->ievent));
printf("x_status: 0x%08x\n", readl(&fec->eth->x_status));
printf("rfifo: status 0x%08x\n", readl(&fec->eth->rfifo_status));
printf(" control 0x%08x\n", readl(&fec->eth->rfifo_cntrl));
printf(" lrfp 0x%08x\n", readl(&fec->eth->rfifo_lrf_ptr));
printf(" lwfp 0x%08x\n", readl(&fec->eth->rfifo_lwf_ptr));
printf(" alarm 0x%08x\n", readl(&fec->eth->rfifo_alarm));
printf(" readptr 0x%08x\n", readl(&fec->eth->rfifo_rdptr));
printf(" writptr 0x%08x\n", readl(&fec->eth->rfifo_wrptr));
}
}
#else
static void tfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
}
static void __maybe_unused rfifo_print(char *devname, mpc5xxx_fec_priv *fec)
{
}
#endif /* DEBUG_FIFO */
static int mpc5xxx_fec_send(struct eth_device *dev, void *eth_data,
int data_length)
{
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
volatile FEC_TBD *pTbd;
// printf("%s length=%d data=0x%08x\n", __FUNCTION__, data_length, eth_data);
#ifdef DEBUG_FIFO
debug_fifo("tbd status: 0x%04x\n", fec->tbdBase[0].status);
tfifo_print(dev->name, fec);
#endif
/*
* Check for valid length of data.
*/
if ((data_length > 1500) || (data_length <= 0)) {
return -1;
}
/*
* Get the first TxBD to send the mac header
*/
pTbd = &fec->tbdBase[0];
pTbd->dataLength = data_length;
pTbd->dataPointer = (uint32)eth_data;
pTbd->status = FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY | FEC_TBD_WRAP;
/*
* Enable SmartDMA transmit task
*/
mpc5xxx_fec_tx_task_enable(fec);
/*
* wait until frame is sent .
*/
while (pTbd->status & FEC_TBD_READY) {
/* FIXME: Timeout */
}
return 0;
}
static int mpc5xxx_fec_recv(struct eth_device *dev)
{
/*
* This command pulls one frame from the card
*/
mpc5xxx_fec_priv *fec = (mpc5xxx_fec_priv *)dev->priv;
FEC_RBD *pRbd = &fec->rbdBase[fec->rbdIndex];
unsigned long ievent;
int frame_length, len = 0;
NBUF *frame;
uchar buff[FEC_MAX_PKT_SIZE];
// printf("%s\n", __FUNCTION__);
/*
* Check if any critical events have happened
*/
ievent = readl(&fec->eth->ievent);
writel(ievent, &fec->eth->ievent);
if (ievent & (FEC_IEVENT_BABT | FEC_IEVENT_XFIFO_ERROR |
FEC_IEVENT_RFIFO_ERROR)) {
/* BABT, Rx/Tx FIFO errors */
mpc5xxx_fec_halt(dev);
mpc5xxx_fec_init(dev);
printf("some error: 0x%08x\n", ievent);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(&fec->eth->x_cntrl) & 0x00000001) {
mpc5xxx_fec_halt(dev);
writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
mpc5xxx_fec_init(dev);
}
}
if (!(pRbd->status & FEC_RBD_EMPTY)) {
if ((pRbd->status & FEC_RBD_LAST) && !(pRbd->status & FEC_RBD_ERR) &&
((pRbd->dataLength - 4) > 14)) {
printf("read from %d (0x%08x) rbd=0x%08x", fec->rbdIndex, pRbd->dataPointer, pRbd);
/*
* Get buffer address and size
*/
frame = (NBUF *)pRbd->dataPointer;
frame_length = pRbd->dataLength - 4;
printf(" len=%d\n", frame_length);
#define DEBUG_RX_HEADER
#ifdef DEBUG_RX_HEADER
{
printf("recv data hdr:\n");
memory_display(frame->data, 0, frame_length, 1);
}
#endif
/*
* Fill the buffer and pass it to upper layers
*/
#ifdef CONFIG_MPC5200
memcpy(buff, frame->head, 14);
memcpy(buff + 14, frame->data, frame_length);
#endif
#ifdef CONFIG_ARCH_IMX27
memcpy(buff, frame->data, frame_length);
#endif
NetReceive(buff, frame_length);
len = frame_length;
} else {
if (pRbd->status & FEC_RBD_ERR) {
printf("error frame: 0x%08x 0x%08x\n", pRbd, pRbd->status);
}
}
/*
* free the current buffer, restart the engine and move
* forward to the next buffer
*/
mpc5xxx_fec_rbd_clean(fec->rbdIndex == (FEC_RBD_NUM - 1) ? 1 : 0, pRbd);
mpc5xxx_fec_rx_task_enable(fec);
fec->rbdIndex = (fec->rbdIndex + 1) % FEC_RBD_NUM;
}
// SDMA_CLEAR_IEVENT (FEC_RECV_TASK_NO);
return len;
}
int mpc5xxx_fec_probe(struct device_d *dev)
{
struct mpc5xxx_fec_platform_data *pdata = (struct mpc5xxx_fec_platform_data *)dev->platform_data;
struct eth_device *edev;
mpc5xxx_fec_priv *fec;
printf("%s\n", __FUNCTION__);
#ifdef CONFIG_ARCH_IMX27
PCCR0 |= PCCR0_FEC_EN;
#endif
edev = (struct eth_device *)malloc(sizeof(struct eth_device));
dev->type_data = edev;
fec = (mpc5xxx_fec_priv *)malloc(sizeof(*fec));
edev->priv = fec;
edev->dev = dev;
edev->open = mpc5xxx_fec_open,
edev->init = mpc5xxx_fec_init,
edev->send = mpc5xxx_fec_send,
edev->recv = mpc5xxx_fec_recv,
edev->halt = mpc5xxx_fec_halt,
edev->get_ethaddr = mpc5xxx_fec_get_hwaddr,
edev->set_ethaddr = mpc5xxx_fec_set_hwaddr,
fec->eth = (ethernet_regs *)dev->map_base;
#ifdef CONFIG_MPC5200
fec->tbdBase = (FEC_TBD *)FEC_BD_BASE;
fec->rbdBase = (FEC_RBD *)(FEC_BD_BASE + FEC_TBD_NUM * sizeof(FEC_TBD));
#endif
#ifdef CONFIG_ARCH_IMX27
/* Reset chip. FIXME: shouldn't it be done for mpc5200 aswell? */
writel(1, &fec->eth->ecntrl);
while(readl(&fec->eth->ecntrl) & 1) {
udelay(10);
}
{
unsigned long base;
base = ((unsigned long)xzalloc(sizeof(FEC_TBD) + 32) + 31) & ~0x1f;
fec->tbdBase = (FEC_TBD *)base;
writel(fec->tbdBase, &fec->eth->etdsr);
base = ((unsigned long)xzalloc(FEC_RBD_NUM * sizeof(FEC_RBD) + 32) + 31) & ~0x1f;
fec->rbdBase = (FEC_RBD *)base;
writel(fec->rbdBase, &fec->eth->erdsr);
}
#endif
fec->xcv_type = pdata->xcv_type;
sprintf(dev->name, "FEC ETHERNET");
#ifdef CONFIG_MPC5200
loadtask(0, 2);
#endif
if (fec->xcv_type != SEVENWIRE) {
fec->miiphy.read = fec5xxx_miiphy_read;
fec->miiphy.write = fec5xxx_miiphy_write;
fec->miiphy.address = CONFIG_PHY_ADDR;
fec->miiphy.flags = pdata->xcv_type == MII10 ? MIIPHY_FORCE_10 : 0;
fec->miiphy.edev = edev;
miiphy_register(&fec->miiphy);
}
eth_register(edev);
return 0;
}
static struct driver_d mpc5xxx_driver = {
.name = "fec_mpc5xxx",
.probe = mpc5xxx_fec_probe,
.type = DEVICE_TYPE_ETHER,
};
static int mpc5xxx_fec_register(void)
{
register_driver(&mpc5xxx_driver);
return 0;
}
device_initcall(mpc5xxx_fec_register);
/**
* @file
* @brief Network driver for FreeScale's FEC implementation.
* This type of hardware can be found on MPC52xx and i.MX27 CPUs
*/