openblt/Target/Demo/ARMCM3_LM3S_EK_LM3S6965_Cro.../Boot/lib/driverlib/flashlib.c

913 lines
28 KiB
C

//*****************************************************************************
//
// flash.c - Driver for programming the on-chip flash.
//
// Copyright (c) 2005-2011 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 6852 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup flash_api
//! @{
//
//*****************************************************************************
#include "inc/hw_flash.h"
#include "inc/hw_ints.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/flashlib.h"
#include "driverlib/interrupt.h"
//*****************************************************************************
//
// An array that maps the specified memory bank to the appropriate Flash
// Memory Protection Program Enable (FMPPE) register.
//
//*****************************************************************************
static const unsigned long g_pulFMPPERegs[] =
{
FLASH_FMPPE,
FLASH_FMPPE1,
FLASH_FMPPE2,
FLASH_FMPPE3
};
//*****************************************************************************
//
// An array that maps the specified memory bank to the appropriate Flash
// Memory Protection Read Enable (FMPRE) register.
//
//*****************************************************************************
static const unsigned long g_pulFMPRERegs[] =
{
FLASH_FMPRE,
FLASH_FMPRE1,
FLASH_FMPRE2,
FLASH_FMPRE3
};
//*****************************************************************************
//
//! Gets the number of processor clocks per micro-second.
//!
//! This function returns the number of clocks per micro-second, as presently
//! known by the flash controller.
//!
//! \return Returns the number of processor clocks per micro-second.
//
//*****************************************************************************
unsigned long
FlashUsecGet(void)
{
//
// Return the number of clocks per micro-second.
//
return(HWREG(FLASH_USECRL) + 1);
}
//*****************************************************************************
//
//! Sets the number of processor clocks per micro-second.
//!
//! \param ulClocks is the number of processor clocks per micro-second.
//!
//! This function is used to tell the flash controller the number of processor
//! clocks per micro-second. This value must be programmed correctly or the
//! flash most likely will not program correctly; it has no affect on reading
//! flash.
//!
//! \return None.
//
//*****************************************************************************
void
FlashUsecSet(unsigned long ulClocks)
{
//
// Set the number of clocks per micro-second.
//
HWREG(FLASH_USECRL) = ulClocks - 1;
}
//*****************************************************************************
//
//! Erases a block of flash.
//!
//! \param ulAddress is the start address of the flash block to be erased.
//!
//! This function will erase a 1 kB block of the on-chip flash. After erasing,
//! the block will be filled with 0xFF bytes. Read-only and execute-only
//! blocks cannot be erased.
//!
//! This function will not return until the block has been erased.
//!
//! \return Returns 0 on success, or -1 if an invalid block address was
//! specified or the block is write-protected.
//
//*****************************************************************************
long
FlashClear(unsigned long ulAddress)
{
//
// Check the arguments.
//
ASSERT(!(ulAddress & (FLASH_ERASE_SIZE - 1)));
//
// Clear the flash access interrupt.
//
HWREG(FLASH_FCMISC) = FLASH_FCMISC_AMISC;
//
// Erase the block.
//
HWREG(FLASH_FMA) = ulAddress;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_ERASE;
//
// Wait until the block has been erased.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_ERASE)
{
}
//
// Return an error if an access violation occurred.
//
if(HWREG(FLASH_FCRIS) & FLASH_FCRIS_ARIS)
{
return(-1);
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Programs flash.
//!
//! \param pulData is a pointer to the data to be programmed.
//! \param ulAddress is the starting address in flash to be programmed. Must
//! be a multiple of four.
//! \param ulCount is the number of bytes to be programmed. Must be a multiple
//! of four.
//!
//! This function will program a sequence of words into the on-chip flash.
//! Programming each location consists of the result of an AND operation
//! of the new data and the existing data; in other words bits that contain
//! 1 can remain 1 or be changed to 0, but bits that are 0 cannot be changed
//! to 1. Therefore, a word can be programmed multiple times as long as these
//! rules are followed; if a program operation attempts to change a 0 bit to
//! a 1 bit, that bit will not have its value changed.
//!
//! Since the flash is programmed one word at a time, the starting address and
//! byte count must both be multiples of four. It is up to the caller to
//! verify the programmed contents, if such verification is required.
//!
//! This function will not return until the data has been programmed.
//!
//! \return Returns 0 on success, or -1 if a programming error is encountered.
//
//*****************************************************************************
long
FlashProgram(unsigned long *pulData, unsigned long ulAddress,
unsigned long ulCount)
{
//
// Check the arguments.
//
ASSERT(!(ulAddress & 3));
ASSERT(!(ulCount & 3));
//
// Clear the flash access interrupt.
//
HWREG(FLASH_FCMISC) = FLASH_FCMISC_AMISC;
//
// See if this device has a write buffer.
//
if(HWREG(SYSCTL_NVMSTAT) & SYSCTL_NVMSTAT_FWB)
{
//
// Loop over the words to be programmed.
//
while(ulCount)
{
//
// Set the address of this block of words.
//
HWREG(FLASH_FMA) = ulAddress & ~(0x7f);
//
// Loop over the words in this 32-word block.
//
while(((ulAddress & 0x7c) || (HWREG(FLASH_FWBVAL) == 0)) &&
(ulCount != 0))
{
//
// Write this word into the write buffer.
//
HWREG(FLASH_FWBN + (ulAddress & 0x7c)) = *pulData++;
ulAddress += 4;
ulCount -= 4;
}
//
// Program the contents of the write buffer into flash.
//
HWREG(FLASH_FMC2) = FLASH_FMC2_WRKEY | FLASH_FMC2_WRBUF;
//
// Wait until the write buffer has been programmed.
//
while(HWREG(FLASH_FMC2) & FLASH_FMC2_WRBUF)
{
}
}
}
else
{
//
// Loop over the words to be programmed.
//
while(ulCount)
{
//
// Program the next word.
//
HWREG(FLASH_FMA) = ulAddress;
HWREG(FLASH_FMD) = *pulData;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_WRITE;
//
// Wait until the word has been programmed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_WRITE)
{
}
//
// Increment to the next word.
//
pulData++;
ulAddress += 4;
ulCount -= 4;
}
}
//
// Return an error if an access violation occurred.
//
if(HWREG(FLASH_FCRIS) & FLASH_FCRIS_ARIS)
{
return(-1);
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Gets the protection setting for a block of flash.
//!
//! \param ulAddress is the start address of the flash block to be queried.
//!
//! This function will get the current protection for the specified 2 kB block
//! of flash. Each block can be read/write, read-only, or execute-only.
//! Read/write blocks can be read, executed, erased, and programmed. Read-only
//! blocks can be read and executed. Execute-only blocks can only be executed;
//! processor and debugger data reads are not allowed.
//!
//! \return Returns the protection setting for this block. See
//! FlashProtectSet() for possible values.
//
//*****************************************************************************
tFlashProtection
FlashProtectGet(unsigned long ulAddress)
{
unsigned long ulFMPRE, ulFMPPE;
unsigned long ulBank;
//
// Check the argument.
//
ASSERT(!(ulAddress & (FLASH_PROTECT_SIZE - 1)));
//
// Calculate the Flash Bank from Base Address, and mask off the Bank
// from ulAddress for subsequent reference.
//
ulBank = (((ulAddress / FLASH_PROTECT_SIZE) / 32) % 4);
ulAddress &= ((FLASH_PROTECT_SIZE * 32) - 1);
//
// Read the appropriate flash protection registers for the specified
// flash bank.
//
ulFMPRE = HWREG(g_pulFMPRERegs[ulBank]);
ulFMPPE = HWREG(g_pulFMPPERegs[ulBank]);
//
// For Stellaris Sandstorm-class devices, revision C1 and C2, the upper
// bits of the FMPPE register are used for JTAG protect options, and are
// not available for the FLASH protection scheme. When Querying Block
// Protection, assume these bits are 1.
//
if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2))
{
ulFMPRE |= (FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30);
}
//
// Check the appropriate protection bits for the block of memory that
// is specified by the address.
//
switch((((ulFMPRE >> (ulAddress / FLASH_PROTECT_SIZE)) &
FLASH_FMP_BLOCK_0) << 1) |
((ulFMPPE >> (ulAddress / FLASH_PROTECT_SIZE)) & FLASH_FMP_BLOCK_0))
{
//
// This block is marked as execute only (that is, it can not be erased
// or programmed, and the only reads allowed are via the instruction
// fetch interface).
//
case 0:
case 1:
{
return(FlashExecuteOnly);
}
//
// This block is marked as read only (that is, it can not be erased or
// programmed).
//
case 2:
{
return(FlashReadOnly);
}
//
// This block is read/write; it can be read, erased, and programmed.
//
case 3:
default:
{
return(FlashReadWrite);
}
}
}
//*****************************************************************************
//
//! Sets the protection setting for a block of flash.
//!
//! \param ulAddress is the start address of the flash block to be protected.
//! \param eProtect is the protection to be applied to the block. Can be one
//! of \b FlashReadWrite, \b FlashReadOnly, or \b FlashExecuteOnly.
//!
//! This function will set the protection for the specified 2 kB block of
//! flash. Blocks which are read/write can be made read-only or execute-only.
//! Blocks which are read-only can be made execute-only. Blocks which are
//! execute-only cannot have their protection modified. Attempts to make the
//! block protection less stringent (that is, read-only to read/write) will
//! result in a failure (and be prevented by the hardware).
//!
//! Changes to the flash protection are maintained only until the next reset.
//! This allows the application to be executed in the desired flash protection
//! environment to check for inappropriate flash access (via the flash
//! interrupt). To make the flash protection permanent, use the
//! FlashProtectSave() function.
//!
//! \return Returns 0 on success, or -1 if an invalid address or an invalid
//! protection was specified.
//
//*****************************************************************************
long
FlashProtectSet(unsigned long ulAddress, tFlashProtection eProtect)
{
unsigned long ulProtectRE, ulProtectPE;
unsigned long ulBank;
//
// Check the argument.
//
ASSERT(!(ulAddress & (FLASH_PROTECT_SIZE - 1)));
ASSERT((eProtect == FlashReadWrite) || (eProtect == FlashReadOnly) ||
(eProtect == FlashExecuteOnly));
//
// Convert the address into a block number.
//
ulAddress /= FLASH_PROTECT_SIZE;
//
// ulAddress contains a "raw" block number. Derive the Flash Bank from
// the "raw" block number, and convert ulAddress to a "relative"
// block number.
//
ulBank = ((ulAddress / 32) % 4);
ulAddress %= 32;
//
// Get the current protection for the specified flash bank.
//
ulProtectRE = HWREG(g_pulFMPRERegs[ulBank]);
ulProtectPE = HWREG(g_pulFMPPERegs[ulBank]);
//
// For Stellaris Sandstorm-class devices, revision C1 and C2, the upper
// bits of the FMPPE register are used for JTAG protect options, and are
// not available for the FLASH protection scheme. When setting protection,
// check to see if block 30 or 31 and protection is FlashExecuteOnly. If
// so, return an error condition.
//
if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2))
{
if((ulAddress >= 30) && (eProtect == FlashExecuteOnly))
{
return(-1);
}
}
//
// Set the protection based on the requested proection.
//
switch(eProtect)
{
//
// Make this block execute only.
//
case FlashExecuteOnly:
{
//
// Turn off the read and program bits for this block.
//
ulProtectRE &= ~(FLASH_FMP_BLOCK_0 << ulAddress);
ulProtectPE &= ~(FLASH_FMP_BLOCK_0 << ulAddress);
//
// We're done handling this protection.
//
break;
}
//
// Make this block read only.
//
case FlashReadOnly:
{
//
// The block can not be made read only if it is execute only.
//
if(((ulProtectRE >> ulAddress) & FLASH_FMP_BLOCK_0) !=
FLASH_FMP_BLOCK_0)
{
return(-1);
}
//
// Make this block read only.
//
ulProtectPE &= ~(FLASH_FMP_BLOCK_0 << ulAddress);
//
// We're done handling this protection.
//
break;
}
//
// Make this block read/write.
//
case FlashReadWrite:
default:
{
//
// The block can not be made read/write if it is not already
// read/write.
//
if((((ulProtectRE >> ulAddress) & FLASH_FMP_BLOCK_0) !=
FLASH_FMP_BLOCK_0) ||
(((ulProtectPE >> ulAddress) & FLASH_FMP_BLOCK_0) !=
FLASH_FMP_BLOCK_0))
{
return(-1);
}
//
// The block is already read/write, so there is nothing to do.
//
return(0);
}
}
//
// For Stellaris Sandstorm-class devices, revision C1 and C2, the upper
// bits of the FMPPE register are used for JTAG options, and are not
// available for the FLASH protection scheme. When setting block
// protection, ensure that these bits are not altered.
//
if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2))
{
ulProtectRE &= ~(FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30);
ulProtectRE |= (HWREG(g_pulFMPRERegs[ulBank]) &
(FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30));
}
//
// Set the new protection for the specified flash bank.
//
HWREG(g_pulFMPRERegs[ulBank]) = ulProtectRE;
HWREG(g_pulFMPPERegs[ulBank]) = ulProtectPE;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Saves the flash protection settings.
//!
//! This function will make the currently programmed flash protection settings
//! permanent. This is a non-reversible operation; a chip reset or power cycle
//! will not change the flash protection.
//!
//! This function will not return until the protection has been saved.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
long
FlashProtectSave(void)
{
int ulTemp, ulLimit;
//
// If running on a Sandstorm-class device, only trigger a save of the first
// two protection registers (FMPRE and FMPPE). Otherwise, save the
// entire bank of flash protection registers.
//
ulLimit = CLASS_IS_SANDSTORM ? 2 : 8;
for(ulTemp = 0; ulTemp < ulLimit; ulTemp++)
{
//
// Tell the flash controller to write the flash protection register.
//
HWREG(FLASH_FMA) = ulTemp;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Gets the user registers.
//!
//! \param pulUser0 is a pointer to the location to store USER Register 0.
//! \param pulUser1 is a pointer to the location to store USER Register 1.
//!
//! This function will read the contents of user registers (0 and 1), and
//! store them in the specified locations.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
long
FlashUserGet(unsigned long *pulUser0, unsigned long *pulUser1)
{
//
// Verify that the pointers are valid.
//
ASSERT(pulUser0 != 0);
ASSERT(pulUser1 != 0);
//
// Verify that hardware supports user registers.
//
if(CLASS_IS_SANDSTORM)
{
return(-1);
}
//
// Get and store the current value of the user registers.
//
*pulUser0 = HWREG(FLASH_USERREG0);
*pulUser1 = HWREG(FLASH_USERREG1);
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Sets the user registers.
//!
//! \param ulUser0 is the value to store in USER Register 0.
//! \param ulUser1 is the value to store in USER Register 1.
//!
//! This function will set the contents of the user registers (0 and 1) to
//! the specified values.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
long
FlashUserSet(unsigned long ulUser0, unsigned long ulUser1)
{
//
// Verify that hardware supports user registers.
//
if(CLASS_IS_SANDSTORM)
{
return(-1);
}
//
// Save the new values into the user registers.
//
HWREG(FLASH_USERREG0) = ulUser0;
HWREG(FLASH_USERREG1) = ulUser1;
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Saves the user registers.
//!
//! This function will make the currently programmed user register settings
//! permanent. This is a non-reversible operation; a chip reset or power cycle
//! will not change this setting.
//!
//! This function will not return until the protection has been saved.
//!
//! \return Returns 0 on success, or -1 if a hardware error is encountered.
//
//*****************************************************************************
long
FlashUserSave(void)
{
//
// Verify that hardware supports user registers.
//
if(CLASS_IS_SANDSTORM)
{
return(-1);
}
//
// Setting the MSB of FMA will trigger a permanent save of a USER
// register. Bit 0 will indicate User 0 (0) or User 1 (1).
//
HWREG(FLASH_FMA) = 0x80000000;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
//
// Tell the flash controller to write the USER1 Register.
//
HWREG(FLASH_FMA) = 0x80000001;
HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT;
//
// Wait until the write has completed.
//
while(HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
//
// Success.
//
return(0);
}
//*****************************************************************************
//
//! Registers an interrupt handler for the flash interrupt.
//!
//! \param pfnHandler is a pointer to the function to be called when the flash
//! interrupt occurs.
//!
//! This sets the handler to be called when the flash interrupt occurs. The
//! flash controller can generate an interrupt when an invalid flash access
//! occurs, such as trying to program or erase a read-only block, or trying to
//! read from an execute-only block. It can also generate an interrupt when a
//! program or erase operation has completed. The interrupt will be
//! automatically enabled when the handler is registered.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntRegister(void (*pfnHandler)(void))
{
//
// Register the interrupt handler, returning an error if an error occurs.
//
IntRegister(INT_FLASH, pfnHandler);
//
// Enable the flash interrupt.
//
IntEnable(INT_FLASH);
}
//*****************************************************************************
//
//! Unregisters the interrupt handler for the flash interrupt.
//!
//! This function will clear the handler to be called when the flash interrupt
//! occurs. This will also mask off the interrupt in the interrupt controller
//! so that the interrupt handler is no longer called.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntUnregister(void)
{
//
// Disable the interrupt.
//
IntDisable(INT_FLASH);
//
// Unregister the interrupt handler.
//
IntUnregister(INT_FLASH);
}
//*****************************************************************************
//
//! Enables individual flash controller interrupt sources.
//!
//! \param ulIntFlags is a bit mask of the interrupt sources to be enabled.
//! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_ACCESS values.
//!
//! Enables the indicated flash controller interrupt sources. Only the sources
//! that are enabled can be reflected to the processor interrupt; disabled
//! sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntEnable(unsigned long ulIntFlags)
{
//
// Enable the specified interrupts.
//
HWREG(FLASH_FCIM) |= ulIntFlags;
}
//*****************************************************************************
//
//! Disables individual flash controller interrupt sources.
//!
//! \param ulIntFlags is a bit mask of the interrupt sources to be disabled.
//! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_ACCESS values.
//!
//! Disables the indicated flash controller interrupt sources. Only the
//! sources that are enabled can be reflected to the processor interrupt;
//! disabled sources have no effect on the processor.
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntDisable(unsigned long ulIntFlags)
{
//
// Disable the specified interrupts.
//
HWREG(FLASH_FCIM) &= ~(ulIntFlags);
}
//*****************************************************************************
//
//! Gets the current interrupt status.
//!
//! \param bMasked is false if the raw interrupt status is required and true if
//! the masked interrupt status is required.
//!
//! This returns the interrupt status for the flash controller. Either the raw
//! interrupt status or the status of interrupts that are allowed to reflect to
//! the processor can be returned.
//!
//! \return The current interrupt status, enumerated as a bit field of
//! \b FLASH_INT_PROGRAM and \b FLASH_INT_ACCESS.
//
//*****************************************************************************
unsigned long
FlashIntStatus(tBoolean bMasked)
{
//
// Return either the interrupt status or the raw interrupt status as
// requested.
//
if(bMasked)
{
return(HWREG(FLASH_FCMISC));
}
else
{
return(HWREG(FLASH_FCRIS));
}
}
//*****************************************************************************
//
//! Clears flash controller interrupt sources.
//!
//! \param ulIntFlags is the bit mask of the interrupt sources to be cleared.
//! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_AMISC values.
//!
//! The specified flash controller interrupt sources are cleared, so that they
//! no longer assert. This must be done in the interrupt handler to keep it
//! from being called again immediately upon exit.
//!
//! \note Because there is a write buffer in the Cortex-M3 processor, it may
//! take several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (because the interrupt controller still sees
//! the interrupt source asserted).
//!
//! \return None.
//
//*****************************************************************************
void
FlashIntClear(unsigned long ulIntFlags)
{
//
// Clear the flash interrupt.
//
HWREG(FLASH_FCMISC) = ulIntFlags;
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************